Physics, asked by karanchoudhary222004, 8 months ago

The Position of a particle moving along x axis is given by x=t^3+t^2+t+1 m find. (1) position of particle at t= 0 sec ,at 2 sec,at 3 sec,at 10 sec . ​​

Answers

Answered by Anonymous
7

Given :

➳ Relation b/w position and time has been provided.

\bigstar\:\underline{\boxed{\tt{t^3+t^2+t+1}}}

To Find :

➨ Position of particle at

  • t = 0s
  • t = 2s
  • t = 3s
  • t = 10s

Solution :

⇒ We can simply solve this question by putting value of t in given position-time equation.

Position at t = 0 s :

\longrightarrow\tt\:x=t^3+t^2+t+1\\ \\ \longrightarrow\tt\:x_0=(0)^3+(0)^2+(0)+1\\ \\ \longrightarrow\underline{\boxed{\bf{x_0=1m}}}

Position at t = 2 s :

\longrightarrow\tt\:x=t^3+t^2+t+1\\ \\ \longrightarrow\tt\:x_2=(2)^3+(2)^2+(2)+1\\ \\ \longrightarrow\tt\:x_2=8+4+2+1\\ \\ \longrightarrow\underline{\boxed{\bf{x_2=15m}}}

Position at t = 3 s :

\longrightarrow\tt\:x=t^3+t^2+t+1\\ \\ \longrightarrow\tt\:x_3=(3)^3+(3)^2+(3)+1\\ \\ \longrightarrow\tt\:x_3=27+9+3+1\\ \\ \longrightarrow\underline{\boxed{\bf{x_3=40m}} }

Position at t = 10 s :

\longrightarrow\tt\:x=t^3+t^2+t+1\\ \\ \longrightarrow\tt\:x_{10}=(10)^3+(10)^2+(10)+1\\ \\ \longrightarrow\tt\:x_{10}=1000+100+10+1\\ \\ \longrightarrow\underline{\boxed{\bf{x_{10}=1111m}}}

Similar questions