Physics, asked by krishnakabra334, 11 months ago

The position of a particle moving along x axis varies as
x(t)=2t² -3t+4m
where t is in seconds. The average velocity between t= 0 and t = 2s is

0.5 m/s
-1 mis
1 m/s
2 m/s​

Answers

Answered by brainlyaryan12
2

<body bgcolor="r">

\huge{\orange{\fbox{\fbox{\blue{\bigstar{\mathfrak{\red{Hello\:Mate}}}}}}}}

<marquee scrollamount = 700>♥️♥️♥️</marquee><marquee scrollamount = 500>⭐⭐⭐</marquee>

<font color = lime>

\huge{\red{\underline{\overline{\mathbf{Question}}}}}

<font color = skyblue>

→ The position of a particle moving along x axis varies as

x(t)=2t² -3t+4m

where t is in seconds. The average velocity between t= 0 and t = 2s is

0.5 m/s

-1 mis

1 m/s

2 m/s

<font color = lime>

\huge{\green{\underline{\overline{\mathbf{Answer}}}}}

⇒Given:

  • x(t)=2t^2-3t+4 m

⇒To Find:

  • Average velocity between-
  • t = 0s and t = 2s

Solution:-

\displaystyle \int\limits_{0}^{2} (2t^2-3t+4)\;dt

\bigg[2\times \big[\frac{t^{2+1}}{2+1}\big] -3\times \big[\frac{t^{1+1}}{1+1}\big]+4t\bigg]_{0}^{2}

\bigg[\frac{2t^3}{3}-\frac{3t^2}{2}+4t\bigg]_{0}^{2}

\bigg[\frac{2(2)^3}{3}-\frac{3(2)^2}{2}+4(2)\bigg] -\bigg[0-0+0\bigg]

\frac{16}{3}-6+8

5.{\bar{3}}+2

\huge{\pink{\overbrace{\underbrace{\purple{v=7.{\bar{3}}\:ms^{\tiny{-1}}}}}}}

<font color = cyan>

≿━━━━━━━━━༺❀༻━━━━━━━━━≾

Formulas Used :-

\int x^n\;dx

  • \Large{\blue{\bigg[\frac{x^{n+1}}{n+1}\bigg]}}

≿━━━━━━━━━༺❀༻━━━━━━━━━≾

\huge{\purple{\bigstar{\blue{\text{Please Follow.. }}}}}<marquee scrollamount = 700>⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️</marquee>

<font color = yellow><marquee scrollamount = 10

★━★━★━★━★━★━★━★━★━★━★━★━★━★

▁ ▂ ▄ ▅ ▆ ▇ █♥️ ᗩᖇƳᗩ ♥️█ ▇ ▆ ▅ ▄ ▂ ▁

★━★━★━★━★━★━★━★━★━★━★━★━★━★

Similar questions