Physics, asked by meghana120103, 11 months ago

the position of centre of mass of a system consisting of two particles of masses M1 and M2 separated by a distance l apart from M1 will be​

Answers

Answered by anirudhsreevaishnava
0

Answer:

m1+m2/m1m2 is the distance of centre of mass from m1

Answered by TheUnsungWarrior
1

Answer:

Centre of Mass, Rcm = \frac{m2 L}{m1 + m2}

Explanation:

[Refer to the attached image to clearly understand the case]

Given;-

          Masses of particles = m₁ and m₂

Length of separation of particles = L

Let R₁ be the position of m₁ and R₂ be the position of m₂.

Let us consider position of m₁ i.e. R₁ to be the origin i.e (0, 0).

Let Rcm denote the centre of mass.

Then, by formula, we know that;-

                Rcm = \frac{m1R1 + m2R2}{m1 + m2}

                Rcm = \frac{m1 (0) + m2(L)}{m1 + m2}

                Rcm = \frac{m2 L}{m1 + m2}

Hence, the position of centre of mass is \frac{m2L}{m1 + m2}.

Hope it helps! ;-))                

Attachments:
Similar questions