Physics, asked by adityarajsingh955599, 5 months ago

The position of the image formed will be
A 3.0 cm tall object is placed perpendicular to the principal axis of a
convex lens of focal length 10 cm. The distance of the object from the
lens is 15 cm.
0 +30 cm
0-50 cm
O +15 cm
0-10 cm​

Answers

Answered by MystícPhoeníx
28

Answer:

  • +30 cm is the required answer

Explanation:

Given:-

  • Height of object ,ho = 3 cm

  • Focal length ,f = +10cm

  • Object distance ,u = -15 cm

To Find:-

  • image distance ,v

Solution:-

Using lens formula

• 1/v - 1/u = 1/f

where,

v is the Image Position

u is the object distance

f is the focal length

Substitute the value we get

→ 1/10 = 1/v - 1/-15

→ 1/10 = 1/v + 1/15

→ 1/v = 1/10 -1/15

→ 1/v = 3-2/30

→ 1/v = 1/30

→ v = +30 cm

  • Hence, the image position is 30 cm .
Answered by Anonymous
19

 \\  \\ \large\underline{ \underline{ \sf{ \red{given:} }}}  \\  \\

  • Height of object (h) = 3cm

  • Focal length ( f ) = 10cm

  • Distance of object from lens (u) = - 15cm

 \\  \\ \large\underline{ \underline{ \sf{ \red{to \: find:} }}}  \\  \\

  • Distance of image from lens (v)

 \\  \\ \large\underline{ \underline{ \sf{ \red{solution:} }}}  \\  \\

Lens formula is given by ,

 \\  \boxed{ \bf \:  \frac{1}{f}  =  \frac{1}{v}  -  \frac{1}{u} } \\  \\

Putting values , we get ,

 \\   \\ \sf \:   \frac{1}{  10}  =  \frac{1}{v}  -  \frac{1}{-15}  \\  \\  \\  \sf \:  \frac{1}{v}  =    \frac{1}{ 10}  -  \frac{1}{15}  \\  \\  \\ \sf \:  \frac{1}{v}  =  \frac{ 15 - 10}{150}  \\  \\  \\  \sf \:  \frac{1}{v}  =  \frac{ 5}{150}  \\  \\   \\ \sf \:  \frac{1}{v}  =   \frac{1}{30}  \\  \\  \\  \sf \pink{ \: v =  30cm} \\  \\

Hence , position of image is 30cm behind the lens.

Opt (a) 30cm

Similar questions