Physics, asked by estreraashantin4799, 11 months ago

The position vector of a particle changes with time according to the relation ⃗r(t) = 15t² î + (4 - 20t²) jˆ. What is the magnitude of the acceleration at t = 1?
(A) 40 (B) 100
(C) 25 (D) 50

Answers

Answered by Anonymous
23

Question

The position vector of a particle changes with time according to the relation ⃗r(t) = 15t² î + (4 - 20t²) jˆ. What is thenmagnitude of the acceleration at t = 1?

(A) 40 (B) 100

(C) 25 (D) 50

Solution

Option (D) is Correct

Given

The position vector of the particle is given as :

 \displaystyle \sf \:  r= 15 {t}^{2}  \hat{i} + (4 - 20 {t}^{2} ) \hat{j} \\  \\  \leadsto \:   \boxed{ \boxed{\sf \: r = 15 {t}^{2}  \hat{i} - 20  {t}^{2} \hat{j} + 4 \hat{j}}}

To finD

Magnitude Of Acceleration

\rule{300}{2}

Differentiating x w.r.t to t,we get :

 \sf \: v =  \dfrac{dr}{dt}  \\  \\  \longmapsto \:  \sf \: v =  \dfrac{d( {15t}^{2}  \hat{i} - 20 \ {t}^{2} \hat{j} + 4 \hat{j}) }{dt}  \\  \\  \longmapsto \:  \sf \: v =  \dfrac{d(15  {t}^{2}  \hat{i} )}{dt}   -  \dfrac{d(20 {t}^{2} \hat{j}) }{dt}  +  \dfrac{d(4 \hat{j})}{dt}  \\  \\  \longmapsto \:   \boxed{\boxed{ \sf \: v = (30t \:  \hat{i} - 40t \:  \hat{j}) \:  \:  {ms}^{ - 1} }}

Differentiating v w.r.t t,we get acceleration :

 \sf \: a =  \dfrac{dv}{dt}  \\  \\  \longmapsto \:  \sf \: a =  \dfrac{d(30 t \:  \hat{i}  - 40t \:  \hat{j})}{dt}  \\  \\  \longmapsto \:  \boxed{ \boxed{ \sf \: a = (30 \hat{i} - 40 \hat{j}) \:  {ms}^{ - 2} }}

\rule{300}{2}

Now,

 \sf \:  |a|  =  \sqrt{ {(30 \hat{i})}^{2}  + ( - 40 \:  \hat{j}) {}^{2} }  \\  \\   \hookrightarrow \:  \sf \sf \: |a|   =  \sqrt{900 + 1600}  \\  \\  \hookrightarrow \:  \sf \:  |a|  =  \sqrt{2500}  \\  \\   \huge{\hookrightarrow \boxed{ \boxed{ \sf \  |a|  = 50 \:  { {ms}^{}  }^{ - 2} }}}

\rule{300}{2}

\rule{300}{2}

Answered by bishansingh786
6

Explanation:

mark as brainiest

☺️

Attachments:
Similar questions