Physics, asked by asiskaurasis6201, 1 year ago

THe position vector of a particle is r = (acoswt)i^ + (asinwt)j^. Find the velocity of the particle and the angle between the position and velocity vector?

Answers

Answered by abhi178
101
we know, velocity is the rate of change of position.

e.g., v=\frac{dr}{dt}

now, differentiating r with respect to time, t .

v=\frac{dr}{dt}=\frac{d}{dt}(acos\omega t)\hat{i}+\frac{d}{dt}(asin\omega t)\hat{j}

v=-a\omega(sin\omega t)\hat{i}+a\omega(cos\omega t)\hat{j}

hence, velocity, \vec{v}=a\omega(-sin\omega t\hat{i}+cos\omega t\hat{j})

now, angle between velocity and position of particle.

cos\theta=\frac{\vec{v}.\vec{r}}{|\vec{v}|.|\vec{r}|}

so, \vec{v}.\vec{r}=(-a\omega sin\omega t\hat{i}+a\omega cos\omega t\hat{j}).(acos\omega t\hat{i}+asin\omega t\hat{j})

= -a^2\omega sin\omega t. cos\omega t+ a^2\omega cos\omega t. sin\omega t

= 0

so, cos\theta = 0 = cos90°

\theta=90^{\circ}

hence, angle between velocity and position is 90°
Answered by siddhart77
26

Answer:

perpendicular to distance of positon vector

Similar questions