Physics, asked by Pavansm, 1 year ago

the position vector of two particles of mass 4 kg and 2 kg are , respectively, r1 = 3t i^ + t j^ +2t2 k^ and r2 = 3 i^ +(t2-1)j^ +4t k^ where t is in seconds and the position in metres. determine the position vector of the centre of mass of the system , the velocity of the cm and the net force acting on the system.

Answers

Answered by kvnmurty
24
m1 = 4.0 kg         m2 = 2.0 kg
Given   vector  r1 =  3 t i + t  j + 2 t² k   m
             vector r2 = 3 i + (t² -1) j + 4 t k   meters

Position vector of Center of mass = r = (m1 r1  + m2 r2 )/ (m1+m2)
 r = [ (4* 3t + 2*3) i + (4* t+ 2* (t²-1)) j + (4*2t² + 2 * 4 t) k ]/(4+2)  meters
  = [ (12t +6) i + (2t² + 4t -2) j + (8t² + 8 t) k ] /6  m

Velocity of cm = v = dr/dt = 2 i + (2t+2)/3 j + (8 t + 4)/3 k    m
    magnitude = √(36+4t²+4+8t+64t²+16+16t)  /3  m
                      = √(17 t²+ 6t + 10) * 2/3  m

Acceleration of cm = a = dv/dt = 2/3 j + 8/3 k
     
Net force acting on the system =  (m1+m2) * a
          = 4 j + 16 k
    Magnitude = 4√17 Newtons

kvnmurty: click on red heart thanks above pls
Similar questions