The positive integer of n > 3 satisfying the equation is
Answers
Answered by
0
Answer:
Solution :
1sin(πn)=1sin(2πn)+1sin(3πn)
⇒1sin(πn)−1sin(3πn)=1sin(2πn)
⇒sin(3πn)−sin(πn)sin(3πn)sin(πn)=1sin(2πn)
⇒2sin(πn)cos(2πn)sin(3πn)sin(πn)⋅sin(2πn)=1
⇒2sin(2πn)cos(2πn)sin(3πn)=1
⇒sin(4πn)sin(3πn)=1
⇒sin(4πn)=sin(3πn)
⇒sin(π−4πn)=sin(3πn)
⇒π−4πn=3πn
=π=7πn
⇒n=7.
Step-by-step explanation:
mark me bralint and like bro plz plz plz plz plz plz plz plz
Answered by
0
Answer:
n=7
Here, is the solution.
In the last step I used the property
sin(pi-x) = sinx
Attachments:
Similar questions