the positive value of x for which x²-9/ x²+5= -5/9 is satisfied, is dash
Answers
Answered by
3
⇒ ( x² - 9 ) ÷ ( x² + 5 ) = -5/9
⇒ 9 ( x² - 9 ) = -5 ( x² + 5 )
⇒ 9x² - 81 = -5x² - 25
⇒ 9x² + 5x² = 81 - 25
⇒ 14 x² = 56
⇒ x² = 56 ÷ 14
⇒ x² = 4
⇒ x = √4
∴ x = ±2.
But it is given that value of x should be positive.
Hence , x = 2.
⇒ 9 ( x² - 9 ) = -5 ( x² + 5 )
⇒ 9x² - 81 = -5x² - 25
⇒ 9x² + 5x² = 81 - 25
⇒ 14 x² = 56
⇒ x² = 56 ÷ 14
⇒ x² = 4
⇒ x = √4
∴ x = ±2.
But it is given that value of x should be positive.
Hence , x = 2.
prabh3jot7052233699:
but it is English
Answered by
0
Answer:
2
Here is your solution:
= ( x² - 9 ) ÷ ( x² + 5 ) = -5/9
= 9 ( x² - 9 ) = -5 ( x² + 5 )
= 9x² - 81 = -5x² - 25
= 9x² + 5x² = 81 - 25
= 14 x² = 56
= x² = 56 ÷ 14
= x² = 4
= x = √4
= x = 2
Similar questions