Physics, asked by ruhildiksha45, 7 months ago

The power applied to a particle varies with time as P= 4t² - 3t+2 watt, where is in second. The change in its kinetic energy between time t= 1s to t= 3s plz answer me fast​

Answers

Answered by Anonymous
24

Answer:

 \boxed{\mathfrak{Change \ in \ kinetic \ energy \ (\Delta K) = 26.67 \ J}}

Explanation:

Power w.r.t. time:

P = (4t² - 3t + 2) Watt

Rate of change of kinetic energy w.r.t. is known as power.

 \bf \dfrac{dK}{dt} = P \\  \bf \int\limits^{K_2}_{K_1} dK = \int\limits^{t_2}_{t_1} P.dt

In the given question;

 \rm t_1 = 1 \ s

 \rm t_2 = 3 \ s

By substituting values in the equation we get:

 \\   \rm \implies \int\limits^{K_2}_{K_1} dK = \int\limits^{t_2 = 3 \: s}_{t_1 = 1 \: s} P.dt \\  \\    \rm \implies \int\limits^{K_2}_{K_1} dK = \int\limits^{3}_{1} (4 {t}^{2}  - 3t + 2).dt  \\  \\   \rm  \implies K \big|_{K_1}^{K_2} = \big[ \dfrac{ 4{t}^{3} }{3}  -  \dfrac{ 3{t}^{2} }{2}  + 2t \big]_{1}^{3} \\  \\ \rm \implies K_2 - K_1 =  \dfrac{4( {3}^{3}  -  {1}^{3} )}{3}  -  \dfrac{3( {3}^{2} -  {1}^{2})  }{2}  + 2(3 - 1) \\  \\  \rm \implies \Delta K =  \dfrac{4( 27 -  1 )}{3}  -  \dfrac{3( 9 -  1)  }{2}  + 2 \times 2 \\  \\   \rm \implies \Delta K =  \dfrac{4 \times 26}{3}  -  \dfrac{3 \times 8}{2}  + 4 \\  \\   \rm \implies \Delta K =  \dfrac{104}{3}  -  (3 \times 4)  + 4 \\  \\ \rm \implies \Delta K =  \dfrac{104}{3}  -  12  + 4 \\  \\ \rm \implies \Delta K =  \dfrac{104}{3}  -  8 \\  \\ \rm \implies \Delta K =  \dfrac{104 - 24}{3} \\  \\ \rm \implies \Delta K =  \dfrac{80}{3} \: J \\  \\ \rm \implies \Delta K = 26.67 \: J

Answered by BrainlyElon
13

Power :

It is defined as change in energy per time .

\orange{\bigstar}\ \; \rm P=\dfrac{dE}{dt}

Solution :

P = 4t² - 3t + 2

We need to find change in K.E b/w t = 1 s to t = 3 s

Here it is given Kinetic energy , so formula changed to ,

\green{\bigstar}\ \; \bf P=\dfrac{dK}{dt}

:\implies \rm dK=Pdt

Integrating on both sides ,

\displaystyle :\implies \rm K=\int Pdt

\displaystyle :\implies \rm K=\int_{1}^{3} (4t^2-3t+2)dt

:\implies \rm K=\left[\dfrac{4t^3}{3}-\dfrac{3t^2}{2}+2t \right]_1^3

:\implies \rm K=\left[\dfrac{4(3)^3}{3}-\dfrac{3(3)^2}{2}+2(3)\right]-\left[\dfrac{4(1)^3}{3}-\dfrac{3(1)^2}{2}+2(1)\right]

:\implies \rm K= \left[ 4(3)^2-\dfrac{3(9)}{2}+6\right]-\left[ \dfrac{4}{3}-\dfrac{3}{2}+2\right]

:\implies \rm K=\left[36-\dfrac{27}{2}+6\right]-\left[-\dfrac{1}{6}+2\right]

:\implies \rm K=40+\dfrac{1}{6}-\dfrac{27}{2}

:\implies \rm K=40-\dfrac{80}{6}

:\implies \rm K=\dfrac{160}{6}

:\implies \bf K=26.67\ J

So , Change in Kinetic energy = 26.67 J

Similar questions