Math, asked by williammunnangi, 10 months ago

the present age of ramu's father is 3 times that of ramu .after 5 years sum of the ages will be 70 years find their present ages ​

Answers

Answered by himanshuMerta
2

Answer:

Rate the answer

Mark as brainliest

Attachments:
Answered by Anonymous
73

AnswEr :

\bullet\:\sf\ Let \: the \: present \: age \: of \: Ramu \: be \:  x \:  years

\bullet\:\sf\ So, \: the \: age \: of \: Ramu's \: father \: is \: 3x \: years

 \rule{100}{1}

\underline{\bigstar\:\textsf{After \: 5 \: years :- }}

\normalsize\ : \implies\sf\ (Ramu's \: age + 5) + (Ramu's \: father \: age + 5) = 70  \\ \\ \normalsize\ : \implies\sf\ (x + 5) + (3x + 5) = 70 \\ \\ \normalsize\ :  \implies\sf\ x + 5 + 3x + 5 = 70 \\ \\ \normalsize\ : \implies\sf\ 4x + 10 = 70 \\ \\ \normalsize\ : \implies\sf\ 4x = 60 \\ \\ \normalsize\ : \implies\sf\ x = \frac{\cancel{60}}{\cancel{4}} = 15

 \rule{100}2

\normalsize\star\:\sf\ Present \: Age \: of \: Ramu :

\normalsize\ : \implies\sf\ Age_{Ramu} = x = 15

\normalsize\ : \implies{\boxed{\sf{Present \: Age \: of \: Ramu = 15 \: years}}}

 \rule{100}2

\normalsize\star\:\sf\ Present \: Age \: of \: Ramu' \: father :

\normalsize\ : \implies\sf\ Age_{R's \: father} = 3x = 3 \times\ 15 \\ \\ \normalsize\ : \implies\sf\ Age_{R's \: father} = 45

\normalsize\ : \implies{\boxed{\sf{Present \: Age \: of \: Ramu's \: father = 45 \: years}}}

Similar questions