Math, asked by bkbipinkumar247, 7 months ago


The present ages of A and B are in the ratio 7:5. Ten years later, their ages will
be in the ratio 9:7. Find their present ages.
please answer quickly please ​


aratishaw1905pbh9rb: bolo babu
aratishaw1905pbh9rb: kya hua
bkbipinkumar247: kya
bkbipinkumar247: ye publicly chat h n uzbak
aratishaw1905pbh9rb: pta h babu
bkbipinkumar247: hn then
aratishaw1905pbh9rb: hlo babu

Answers

Answered by awantikaraj14
4

Answer:

the answer will be

A= 35 and B = 25

please mark as brainliest please please

Answered by XxItzDynamiteBabexX
305

Given :

  • Present Ages of A and B are in the ratio 7:5 .

  • After 10 years their ages will be in the ratio 9:7 .

To Find :

  • Present Ages of A and B .

Solution :

\longmapsto\tt{Let\:Present\:age\:of\:A\:be=7x}

\longmapsto\tt{Let\:Present\:age\:of\:B\:be=5x}

After 10 years :

\longmapsto\tt{Age\:of\:A=7x+10}

\longmapsto\tt{Age\:of\:B=5x+10}

A.T.Q :

\longmapsto\tt{\dfrac{7x+10}{5x+10}=\dfrac{9}{7}}

\longmapsto\tt{7(7x+10)=9(5x+10)}

\longmapsto\tt{49x+70=45x+90}

\longmapsto\tt{49x-45x=90-70}

\longmapsto\tt{4x=20}

\longmapsto\tt{x=\cancel\dfrac{20}{4}}

\longmapsto\tt\bf{x=5}

Value of x is 5 .

Therefore :

\longmapsto\tt{Present\:Age\:of\:A=7(5)}

\longmapsto\tt\bf{35\:yrs}

\longmapsto\tt{Present\:Age\:of\:B=5(5)}

\longmapsto\tt\bf{25\:yrs}

Similar questions