Math, asked by lalit4286, 8 months ago

The price of 6 chocolates 3 biscuit packet together is 120 rupees. The price of 10 chocolates and 3 biscuits packet is 186 rupees. What is the price of chocolate and what is the price of biscuit packet​

Answers

Answered by Anonymous
1

GIVEN :-

  • 6 chocolates and 3 biscuits cost 120 rupees

  • 10 chocolates and 3 biscuits cost 186 rupees

TO FIND :-

  • price of chocolate and biscuit

SOLUTION :-

let the number of chocolate be x

and the number of biscuits be y

so according to question :-

   \implies\rm{6x + 3y = 120}

 \implies\rm{ \bf{2x + y = 40}} \:  \:  \:  \:  \:  \:  \: (1)

now for 2nd condition

 \implies\rm{ \bf{10x + 3y = 186}} \:  \:  \:  \:  \:  \:  (2)

now taking eq (1)

   \implies\rm{2x + y = 40}

\implies\rm{  \bf{y = 40 - 2x}} \:  \:  \:  \:  \:  \: (3)

now by using SUBSTITUTION METHOD,

putting the value of y in eq (2) from eq (3)

 \implies\rm{10x + 3y = 186}

\implies\rm{ 10x + 3(40 - 2x) = 186}

\implies\rm{ 10x + 120 - 6x= 186}

\implies\rm{ 10x  - 6x= 186 - 120}

\implies\rm{ 4x= 186 - 120}

\implies\rm{ 4x= 66}

\implies \boxed{\rm{ x= 16.5}}

now putting the value of x in eq 3

\implies\rm{  y = 40 - 2x}

\implies\rm{  y = 40 - 2(16.5)}

 \implies \rm{y = 40 - 33}

\implies  \boxed{\rm{y = 7}}

HENCE ,

 \implies \boxed{ \boxed{ \rm{chocolate = 16.5 \: rs  \:  ,  \:biscuit = 7 \: rs}}}

Similar questions