Business Studies, asked by annu6307, 1 year ago

The princiapal which will amount to ₹270.40 in 2 years at the rate of 4%per annum compound interest is

Answers

Answered by MonarkSingh
20
\huge\boxed{\texttt{\fcolorbox{red}{aqua}{Hey Mate!!!}}}
<b><i><font face=Copper black size=4 color=red>
Here is your answer

As we know the formula,
a = p(1 +  \frac{r}{100} ) {}^{n}  \\  \\ 270.4 = p(1 +  \frac{4}{100} ) {}^{2}  \\  \\ 270.4 = p( \frac{  25 + 1 }{25} ) {}^{2}  \\  \\ 270.4 = p( \frac{26}{25} ) {}^{2}  \\  \\ p =  \frac{270.4 \times 25 \times 25}{26 \times 26}  \\  \\ p = 250
Therefore, Principal is ₹250.

\large{\blue{\boxed{\boxed{\boxed{\boxed{\boxed{\boxed{\boxed{\boxed{\boxed{\boxed{\underline{\underline{\underline{Hope\:it\:helps\: you}}}}}}}}}}}}}}}

\huge\boxed{\texttt{\fcolorbox{Red}{yellow}{Be brainly!!!}}}

<marquee>
\huge\bf{\red{\huge{\bf{@..MonarkSingh}}}}
Answered by rajeev378
16
\huge\boxed{\texttt{\fcolorbox{red}{aqua}{Hey Mate!!!}}}
<b><i><font face=Copper black size=4 color=blue><marquee direction="up">
Here is your answer

Given:

Amount = ₹270.4

Time = 2 years

Rate of interest = 4% p.a.

As we know that,

a = p(1 +  \frac{r}{100} ) {}^{n}  \\  \\ 270.4 = p(1 +  \frac{ 4}{100} ) {}^{2}  \\  \\  \\ 270.4 = p( \frac{25 + 1}{25} ) {}^{2}  \\  \\  270.4 = p( \frac{26}{25} ) {}^{2}  \\  \\ p =  \frac{270.4 \times  {25}^{2} }{ {26}^{2} }  \\  \\ p = 250
Now,

Principal = ₹250

\large{\red{\boxed{\boxed{\boxed{\boxed{\boxed{\boxed{\boxed{\boxed{\boxed{\boxed{\underline{\underline{\underline{Hope\:it\:helps\: you}}}}}}}}}}}}}}}

\huge\boxed{\texttt{\fcolorbox{Red}{yellow}{Be brainly!!!}}}

\huge\bf{\red{\huge{\bf{@.....rajeev378}}}}
Similar questions