The principal argument of z = i - 2 - 3i+ 4 + 5i - 6 - 7i+8+...
100 terms, is
Answers
Answered by
0
(1) 50(1-i)
(2) 25(1+i)
(3) 100(1-i)
(4) 25i
Solution:
We know i2 = -1 and i4 = 1
Let S = i – 2 – 3i + 4 +…100i100
= i+ 2i2 + 3i3 + 4i4 + 5i5+….100i100
iS = i2+ 2i3+ 3i4+….+99i100 + 100i101
S-iS = (i + i2 + i3 + i4+…i100)-100i101
S(1-i) = i(i100-1)/(i-1) – 100i101
= -100i101 (since i100 = 1)
S = -100i101/(1-i)
= -100i/(1-i)
= -100i(1+i)/2 (rationalizing)
= -50i(1+i)
= -50(i-1)
= 50(1-i)
Hence option (1) is the answer.
Similar questions