Math, asked by bhaveshadekar04, 2 months ago

the principal value of cos(π/2-sin^-1 1/2) =?​

Answers

Answered by bksinghakauna999
4

Answer:

I think this is the correct answer

Attachments:
Answered by pulakmath007
0

\displaystyle \sf{cos \bigg(  \frac{\pi}{2}  -  {sin}^{ - 1} \frac{1}{2}  \bigg) =  \frac{1}{2}   }

Given :

The expression

\displaystyle \sf{cos \bigg(  \frac{\pi}{2}  -  {sin}^{ - 1} \frac{1}{2}  \bigg)  }

To find :

The principal value of the expression

Formula :

\displaystyle \sf{cos \bigg(  \frac{\pi}{2}  -  \theta  \bigg) = sin \theta  }

Solution :

Step 1 of 2 :

Write down the given expression

The given expression is

\displaystyle \sf{cos \bigg(  \frac{\pi}{2}  -  {sin}^{ - 1} \frac{1}{2}  \bigg)  }

Step 2 of 2 :

Find the principal value of the expression

\displaystyle \sf{cos \bigg(  \frac{\pi}{2}  -  {sin}^{ - 1} \frac{1}{2}  \bigg)  }

\displaystyle \sf{ = sin\bigg(  {sin}^{ - 1} \frac{1}{2}  \bigg)  }

\displaystyle \sf{ =  \frac{1}{2}  }

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. tan⁻¹2 +tan⁻¹3 is

https://brainly.in/question/5596487

2. tan⁻¹(x/y)-tan⁻¹(x-y/x+y)=

https://brainly.in/question/5596504

Similar questions
Math, 1 month ago