Math, asked by TbiaSupreme, 1 year ago

The probability distribution of a random variable X is as follows
X=x
1
2
3
4
K
p(x)
0.1
K
0.2
3K
0.3
1) Find the value of k.
2) Find the mean and variance.

Answers

Answered by amitnrw
1

Answer:

K = 0.1

Mean = 2.13

Step-by-step explanation:

x      P(x)

1       0.1

2      K

3      0.2

4      3K

K      0.3

Total Probability = 1

=> P(1) + P(2) + P(3) + P(4) + P(K) = 1

01 + K + 0.2 + 3K + 0.3 = 1

=> 4K = 0.4

=> K = 0.1

x      P(x)

1       0.1

2      0.1

3      0.2

4      0.3

0.1    0.3

Mean =  ( 1 * 0.1  + 2 * 0.1  + 3 * 0.2  + 4 * 0.3  + 0.1 * 0.3)

= ( 0.1 + 0.2 + 0.6 + 1.2 +  0.03)

= 2.13

Answered by pulakmath007
2

\displaystyle\huge\red{\underline{\underline{Solution}}}

TO DETERMINE

For given probability distribution of a random variable X to calculate

1) Find the value of k

2) Find the mean and variance.

CALCULATION

1)

Since p(x) is the probability function of a random variable X

Then

 \sf{ \sum p(x) = 1  \: }

 \implies \sf{ (0.1 + k + 0.2 + 3k + 0.3) = 1}

 \implies \sf{ 0.6 + 4k  = 1}

 \implies \sf{  4k  = 0.4}

 \implies \sf{k  = 0.1}

Hence the value of k is 1

2) CALCULATION OF MEAN

Mean

 =  \sf{ \sum \: x \: p(x)  \: }

 =  \sf{(1 \times 0.1) + (2 \times k) + (3 \times 0.2) + (4 \times 3k) + (k \times 0.3) \: }

 \sf{ = 0.1 + 2k + 0.6 + 12k + 0.3k \: }

 \sf{ = 14.3k + 0.7 \: }

 \sf{ = (14.3 \times 0.1) + 0.7\: }

 \sf{ =1.43 + 0.7 \: }

 \sf{ =2.13 \: }

Hence Mean = 2.13

CALCULATION OF VARIANCE

Here

  \sf{ \sum \: x \: p(x)  = 2.13 \: }

Again

 \sf{ \sum \:  {x}^{2}  \: p(x)  \: }

  = \sf{ ( {1}^{2} \times 0.1) + ( {2}^{2}    \times k) + ( {3}^{2} \times 0.2) + ( {4}^{2}  \times 3k) + ( {k}^{2}  + 0.3) \: }

 =  \sf{0.1 + 4k + 1.8 + 48k +( 0.3 \times {k}^{2})  \: }

 =  \sf{1.9 + 52k +( 0.3 \times {k}^{2})  \: }

 =  \sf{1.9 + (52 \times 0.1) + ( 0.3 \times {(0.1)}^{2})  \: }

 =  \sf{1.9 + 5.2 + 0.003 \: }

 =  \sf{7.103  \: }

Hence variance

 =  \sf{ \sum \:  {x}^{2}  \: p(x)  \:  -  { \bigg( \sum \:  {x}  \: p(x) \bigg)}^{2} }

 =  \sf{7.103 -  {(2.13)}^{2}  \:  \: }

 =  \sf{ 7.103 - 4.5369\:  \: }

 =  \sf{ 2.5661\:  \: }

Hence variance = 2.5661

━━━━━━━━━━━━━━━━

LEARN MORE FROM BRAINLY

The product of three geometric means between 5 and 125 will be. (a) 3125 (b) 15625 (c) 125 (d) 625

https://brainly.in/question/24023437

Similar questions