The probability distribution of random variable X is f(x) = ksin(πx/5)
, 0 ≤ x ≤ 5. Determine
the constant k. Also check whether the given function satisfies the conditions of being a
probability density function.
Answers
Answered by
16
Since f(x) is a p.d.f. ∫−∞∞f(x)dx=1
⇒∫01k(1−x2)dx=1
⇒k[x−3x3]01=1
⇒k(1−31)=1
⇒32k=1
⇒k=23
(ii) The distribution function F(x)=∫−∞xf(t)dt
(a) When x∈(−∞,0]
F(x)=∫−∞xf(t)dt=0
(b) When xε(0,1]
F(x)=∫−∞xf(t)dt=∫−∞0f(t)dt+∫0xf(t)dt
=0+23∫0x(1−t2)dt
F(x)=23(x−3x3)
(c) When x∈[1,∞)
F(x)=∫−∞xf(t)dt
=∫−∞0f(t)dt+∫01f(t)dt+∫1xf(t)dt
=0+∫0123(1−t2)dt+0
=23[t3t3]01=1
∴F(x)=⎩⎪⎪⎪⎨⎪⎪⎪⎧023(x−3x3),1−∞<x≤00<x<11≤x∞[/tex]
✍Hope it's helpful to you ✍
Similar questions