Math, asked by StrongGirl, 9 months ago

The probability of hitting a target is 1/10 then find the minimum number of trials so that the probability of at least one success is greater than 1/4 is:

Attachments:

Answers

Answered by pulakmath007
7

\displaystyle\huge\red{\underline{\underline{Solution}}}

FORMULA TO BE IMPLEMENTED

Bernoulli Trials

Under same condition if an experiment is repeated n times. Then the probability of r success is

 \displaystyle \: = \large^{n}C_r \:  \times  {p}^{r} \times  {(1 - p)}^{n - r}

where p = probability of success in a single trial

EVALUATION

The probability of hitting a target is

 \displaystyle \:  \frac{1}{10}

So the probability of success

 =  \displaystyle \:  \frac{1}{10}

Probability of failure

  = \displaystyle \:1 -   \frac{1}{10}  = \frac{9}{10}

Let the minimum number of trials required = n

So the probability of at least one success

 = 1 - P(0)

 \displaystyle \: = 1 -   \large^{n}C_0 \:  { \bigg( \frac{1}{10}  \bigg)}^{0} \times  { \bigg( \frac{9}{10}  \bigg)}^{n - 0}

 \displaystyle \: = 1 -  { \bigg( \frac{9}{10}  \bigg)}^{n }

By the given condition

 \displaystyle \:  1 -  { \bigg( \frac{9}{10}  \bigg)}^{n } \geqslant  \frac{1}{4}

 \implies \:  \displaystyle \:   { \bigg( \frac{9}{10}  \bigg)}^{n }  \leqslant \: 1 -    \frac{1}{4}

 \implies \:  \displaystyle \:   { \bigg( \frac{9}{10}  \bigg)}^{n }  \leqslant \:  \frac{3}{4}

 \implies \:  \displaystyle \:  n \: log { \bigg( \frac{9}{10}  \bigg)} \leqslant \: log \bigg( \frac{3}{4}  \bigg)

 \implies \:  \displaystyle  \: n(log \: 9 - log \: 10) \leqslant (log3 - log4)

 \implies \:  \displaystyle  \: n(0.9542 - 1) \leqslant (0.4771 - 0.6021)

 \implies \:  \displaystyle  \: n \times 0.0458  \geqslant  0.125

 \implies \:  \displaystyle  \: n   \geqslant  2.729

Hence the minimum number of trials = 3

Similar questions