the probability that at least one of events A and B occurs is 0.6 if A and B occur simultaneously with probability 0.2, evaluate P(A) + P(B)
Answers
Answered by
9
hey mate!
Given :
P(A∪B)=0.6,P(A∩B)=0.2P(A∪B)=0.6,P(A∩B)=0.2
∴P(A∪B)=P(A)+P(B)−P(A∩B)∴P(A∪B)=P(A)+P(B)−P(A∩B)
0.6=P(A)+P(B)−0.20.6=P(A)+P(B)−0.2
⇒0.6+0.2=P(A)+P(B)⇒0.6+0.2=P(A)+P(B)
⇒P(A)+P(B)=0.8⇒P(A)+P(B)=0.8
Step 2:
P(A¯)+P(B¯)=(1−P(A))+1−P(B))P(A¯)+P(B¯)=(1−P(A))+1−P(B))
⇒2−(P(A)+P(B))⇒2−(P(A)+P(B))
⇒2−0.8=1.2⇒2−0.8=1.2
Hence (C) is the correct answer.
Similar questions