Math, asked by asmitadey5974, 11 months ago

The product (a+b) (a-b) (a²-ab+b²) (a²+ab+b²) is equal to
A. a⁶+b⁶
B. a⁶-b⁶
C. a³-b³
D. a³+b³

Answers

Answered by nikitasingh79
10

Given : (a + b) (a - b) (a² - ab + b²) (a² + ab + b²)  

To find : The product (a + b) (a - b) (a² - ab + b²) (a² + ab + b²)  

Solution :  

We have (a + b) (a - b) (a² - ab + b²) (a² + ab + b²)  

By rearranging the terms :  

{(a + b)  (a² + ab + b²)}{

(a - b) (a² - ab + b²)}

We know that a³ + b³ = (a + b)(a² + b² – ab) and   a³ – b³ = (a – b)(a² + b² + ab)

Now

= (a³ + b³) (a³ - b³)

= (a³)² - (b³)²

[By using the identity , (a + b)(a - b) = a² – b² ]

= a⁶ - b⁶

Hence the  product (a + b) (a - b) (a² - ab + b²) (a² + ab + b²) is  a⁶ - b⁶.

Among the given options option (B) a⁶ - b⁶ is correct.

HOPE THIS ANSWER WILL HELP YOU…..

 

Some questions of this chapter :

The product (x²-1) (x⁴+x²+1) is equal to=

A. x⁸-1

B. x⁸+1

C. x⁶-1

D. x⁶+1

https://brainly.in/question/15898040

If x³ + 1/x³ =110, then x +1/x = ?

A. 5

B. 10

C. 15

D. none of these

https://brainly.in/question/15897827

Answered by nirajmallick288
2

Answer:

(a+b) (a-b) (a²+ab+b²) (a²-ab+b²) (a²+ab+b²)

Similar questions