the product of 4 numbers in GP is 64 the ratio of the sum of the means to the sum of the extremes is 2/3 find the numbers
Answers
Answer:
numbers are 1 , 2 4 8
or -1 , -2 , -4 , -8
Step-by-step explanation:
Let say 4 numbers are
a , ar , ar² , ar³
a = first term
r = common ratio
the product of 4 numbers in GP is 64
=> a * ar * ar² * ar³ = 64
=> a⁴ r⁶ = 64
(ar + ar²)/(a + ar³) = 2/3
=> 3r + 3r² = 2 + 2r³
=> 2r³ - 3r² - 3r + 2 = 0
=> (r - 2)(2r² + r - 1) = 0
=> (r - 2) (2r² + 2r - r - 1) = 0
=> (r - 2)( 2r(r + 1) - 1(r + 1)) = 0
=> (r - 2)(2r - 1)(r + 1) = 0
=> r = 2 , 1/2 , -1 but r = -1 make denominator 0 so not possible
putting r = 2
a⁴ r⁶ = 64 => a⁴2⁶ = 64 => a⁴ = 1 => a = ± 1
numbers are
1 , 2 , 4 , 8 or -1 , -2 , -4 , - 8
putting r = 1/2
a⁴ r⁶ = 64 => a⁴(1/2)⁶ = 64 => a⁴ = 64 * 64 => a = ± 8
numbers are
8 , 4 , 2 , 1 or -8 - 4 , -2 , -1
Assumption
First term be t
Common ratio be c
Hence,
t , tc , tc² , tc³
⇒ t × tc × tc² × tc³ = 64
⇒ t⁴(c)^⁶ = 64
⇒ 3c + 3c² = 2 + 2c³
⇒ 2c³ - 3c² - 3c + 2 = 0
⇒ (c - 2)(2c² + c - 1) = 0
⇒ (c - 2) (2c² + 2c - c - 1) = 0
⇒ [(c - 2){2c(c + 1) - 1(c + 1)}] = 0
⇒ (c - 2)(2c - 1)(c + 1) = 0
Now,
c = 2
⇒ t⁴(c)^⁶ = 64
⇒ t⁴(2)^⁶ = 64
⇒ t⁴ = 1
⇒ t = ± 1
Substituting
⇒t⁴(c)^⁶ = 64
⇒ t⁴ = 64 × 64
⇒ t⁴ = 4096
⇒ t = ±8