Math, asked by missmona01, 1 month ago

The product of (4x + y) (4x – y) is​

Answers

Answered by Anonymous
11

 \bold{(4x + y) (4x – y)}

 \bold{4x(4x  -  y)  + y(4x – y)}

 \bold{16 {x}^{2}   - 4xy+ y(4x – y)}

 \bold{16 {x}^{2}   - 4xy+ 4xy – yy}

 \bold{16 {x}^{2}   - 4xy+ 4xy –  {y}^{2} }

 \bold{16 {x}^{2}  -  {y}^{2}}

Answered by SmritiSami
5

Given: (4x + y)(4x - y)

To find: The product of (4x + y)(4x - y)

Solution:

Expanding the given expression:

⇒ 4x(4x - y) + y(4x - y)

Solving the expression

⇒ 16x^{2} - 4xy + 4xy - y^{2}

⇒ 16x^{2} - y^{2}                                      [-4xy + 4xy = 0]

(4x)^{2} - y^{2}

Therefore, the required product is  (4x)^{2} - y^{2} .

                                           

                                                           OR

The given expression can also be solved using the algebraic identity :-

.: a^{2} - b^{2} = (a + b)(a - b)

Now, you can observe that the given expression (4x + y)(4x - y) is in the form of (a + b)(a - b).

Hence, (4x + y)(4x - y) = (4x)^{2} - y^{2}.

                 

Similar questions