The product of (7a-8b) and (7a-8b) is
(A) 14m^2-112ab+16b^2
(B) 49a^2+112ab-64b^2
(C) 49a^2-112ab+64b^2
(D) 49a^2-112ab-64b^2
Answers
Answered by
8
Required Answer:
Two expression -
- 7a - 8b
- 7a - 8b
a. 4a² - 112ab + 16b²
b. 49a² + 112ab - 64b²
c. 49a² - 112ab + 64b²
d. 49a² - 112ab - 64b²
We have to find the product of the two expressions.
Method 1 -
Use the distributive property.
Method 2 -
Use the identity, (a - b) (a - b) = (a - b)² = (a² - 2ab + b²).
Method 1 -
(7a - 8b) × (7a - 8b)
Use distributive property,
⇒ 7a(7a-8b) - 8b(7a-8b)
Multiply each term,
⇒ (7a × 7a - 7a × 8b) - (8b × 7a - 8b × 8b)
Solve the brackets,
⇒ 49a² - 56ab - 56ab - 64b²
Solve the like term,
⇒ 49a² - 112ab - 64b²
Method 2 -
(7a - 8b) × (7a - 8b)
Also written as,
⇒ (7a - 8b)²
Use the identity,
⇒
Substitute the value,
⇒ 7a² - 2(7a × 8b) + 8b²
Solve the value,
⇒ 49a² - 156ab + 64b²
Similar questions