Math, asked by divyaturaka132, 9 months ago

the product of (a+b)(a-b) ( {a }^{2} - ab + {b}^{2} )( {a }^{2} + ab + {b}^{2} )​

Answers

Answered by Saby123
2

To find -

Find the product of -

( a + b )( a - b )( a² - ab + b² )( a² + ab + b² ) .

Solution -

( a + b )( a - b )( a² - ab + b² )( a² + ab + b² )

=> ( a² - b² )( a² - ab + b² )( a² + ab + b² )

=> ( a² - b² )[ ( a² + b² )² - a²b² ]

=> ( a² - b² ) [ a² + b⁴ + 2a²b² - a²b² ]

=> ( a² - b² )( a⁴ + a²b² + b⁴ )

=> a⁶ + a⁴b² + a²b⁴ - a⁴b² - a²b⁴ - b⁶

=> a⁶ - b⁶ .

This is the required answer.

_________________________________

Additional Information -

( a + b )² = a² + 2ab + b²

( a - b )² = a² - 2ab + b²

( a + b )( a - b ) = a² - b²

( a + b )³ = a³ + 3ab ( a + b ) + b³

( a - b )³ = a³ - 3ab ( a + b ) - b³

( a + b + c )³ = a³ + b³ + c³ + 3 ( a + b )( b + c )( c + a )

a³ + b³ + c³ - 3abc = ( a + b + c )( a² + b² + c² - ab - bc - ca )

When a + b + c = 0 ,

a³ + b³ + c³ = 3abc .

_________________________________

Answered by ManuAgrawal01
14

Given:-

⠀⠀

 \bf \implies(a+b)(a-b) ( {a }^{2} - ab + {b}^{2} )( {a }^{2} + ab + {b}^{2} )

⠀⠀

To Find:-

⠀⠀

 \bf \implies \: The  \: Solution

⠀⠀

STEP BY STEP EXPLANATION:-

⠀⠀

 \bf \implies( {a}^{2} -  {b}^{2} ) \times  ( {a }^{2} - ab + {b}^{2} ) \times ( {a }^{2} + ab + {b}^{2} )

⠀⠀

 \bf \implies( {a}^{2} -  {b}^{2} ) \times  (( {a }^{2} - ab + {b}^{2} ) - {a }^{2}   \:  {b}^{2} )

⠀⠀

 \bf \implies( {a}^{2} -  {b}^{2} ) \times  (  {a}^{4}  + 2 {a}^{2}  \:  {b}^{2}  +  {b}^{4}  -  {a}^{2}  \:  {b}^{2} )

⠀⠀

 \bf \implies( {a}^{2} -  {b}^{2} ) \times  (  {a}^{4}  +   {a}^{2}  \:  {b}^{2}  \: \:   {b}^{4} )

⠀⠀

 \bf \implies{a}^{6} -  {b}^{6}

Similar questions