The product of (a+b) and (a+b) is / (a+b) (a+b) 1 point (a² + b² ) ( a+ b ) ( a +b )² (a² b² )
Answers
Answered by
0
To find : The product (a + b) (a - b) (a² - ab + b²) (a² + ab + b²)
Solution :
We have (a + b) (a - b) (a² - ab + b²) (a² + ab + b²)
By rearranging the terms :
{(a + b) (a² + ab + b²)}{
(a - b) (a² - ab + b²)}
We know that a³ + b³ = (a + b)(a² + b² – ab) and a³ – b³ = (a – b)(a² + b² + ab)
Now
= (a³ + b³) (a³ - b³)
= (a³)² - (b³)²
[By using the identity , (a + b)(a - b) = a² – b² ]
= a⁶ - b⁶
Hence the product (a + b) (a - b) (a² - ab + b²) (a² + ab + b²) is a⁶ - b⁶.
Among the given options option (B) a⁶ - b⁶ is correct.
HOPE THIS ANSWER WILL HELP YOU…..
Similar questions