Math, asked by mduvs2004, 7 months ago

The product of an odd function and an even function is ___function​

Answers

Answered by Parampreet2148
0

Answer:

The product of an even function and an odd function is an odd function. The quotient of two even functions is an even function.

Step-by-step explanation:

Pls mark me brainlist......

Answered by snehanegi17
0

Answer:

The product of an odd function and an even function is an odd function​.

Step-by-step explanation:

To Find:

The product of an odd function and an even function is an odd function​.

Solution:

  • Let f(x) be odd and g(x) be even.
  • Then, f(-x) = - f(x)  and g(-x)= g(x) for all x.
  • Let, h(x) = f(x)g(x)
  • Then we can say that:

                           h(-x) = f (-x) g(-x)

                                   = (-f(x)) g(x)

                                   = - (f(x))g(x)

                                   = -(f(x)g(x))

                                   = -h(x)

                                  for all x.

  • That is h(x) is odd.
  • Thus, we conclude that:

The product of an odd function and an even function is an odd function​.

Similar questions