Math, asked by aneeskhan04617, 4 months ago

The product of the digits of a two digit positive number is 24. If 18 is added to the
number then the digits of the number are interchanged. Find the number.​

Answers

Answered by ShírIey
80

☯ Let the ten's digit of the number be x.

Given that,

  • The product of the digits of a two digit positive number is 24.

:\implies\sf Unit's \ digit = \dfrac{24}{x}

And,

:\implies\sf Two \: digit \: number = 10x + \dfrac{24}{x}

⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━━━

⠀⠀⠀⠀⠀⠀

⠀⠀⠀\boxed{\bf{\mid{\overline{\underline{\bigstar\: According\: to \: the \: Question :}}}}\mid}

⠀⠀⠀

  • If 18 is added to the number then the digits of the number are interchanged.

:\implies\sf 10 \times \dfrac{24}{x} + x

⠀⠀⠀

Now,

⠀⠀⠀

:\implies\sf 10x + \dfrac{24}{x} + 18 = 10 \times \dfrac{24}{x} + x \\\\\\:\implies\sf 10x^2 + 24 + 18x = 240 + x^2  \\\\\\:\implies\sf  10x^2 - x^2 + 18x = 240 - 24 \\\\\\:\implies\sf 9x^2 + 18x = 216  \\\\\\:\implies\sf   9x^2 + 18x - 216 = 0 \\\\\\:\implies\sf 9 \Big(9x^2 + 18x - 216 \Big) = 0 \\\\\\:\implies\sf x^2 + 2x - 24 = 0 \\\\\\:\implies\sf x^2 + 6x - 4x - 24 = 0 \\\\\\:\implies\sf x(x + 6) -4 (x + 6) = 0 \\\\\\:\implies\sf (x - 4) (x + 6) = 0 \\\\\\:\implies\sf x = 4 \: \: \& \ \ x = -6

⠀⠀⠀

  • Ignoring negative value, x is 4.

⠀⠀⠀

Therefore,

⠀⠀⠀

:\implies\sf The \: number = 10x + \dfrac{24}{x}\\\\\\:\implies\sf 10 (4) + \cancel\dfrac{24}{4} \\\\\\:\implies\sf 40 + 6 \\\\\\:\implies{\underline{\boxed{\frak{\pink{46}}}}} \ \bigstar

⠀⠀⠀

\therefore\:{\underline{\sf{Hence,\ \ required \ two \ digit \ number \:is\: \frak{46}.}}}

Answered by INSIDI0US
186

Step-by-step explanation:

\frak Given = \begin{cases} &\sf{The\ product\ of\ the\ digits\ of\ a\ two\ positive\ number\ is\ 24.} \\ &\sf{And\ number\ 18\ is\ added\ to\ the\ number\ then\ the\ digits\ of\ the\ number\ are\ interchanged.} \end{cases}

To find:- We have to find the number?

☯️ Let the digit at ten's place be x.

___________________

 \frak{\underline{\underline{\dag So\ here:-}}}

 \sf : \implies {The,\ digit\ at\ one's\ place\ =\ \dfrac{24}{x}} \\ \\ \sf : \implies {Original\ number\ =\ 10x\ +\ \dfrac{24}{x}} \\ \\ \sf : \implies {\underline{On\ interchanging\ the\ numbers:-}} \\ \\ \sf : \implies {New\ number\ =\ \dfrac{240}{x}\ +\ x}

___________________

 \frak{\underline{\underline{\dag According\ to\ the\ question:-}}}

 \sf : \implies {10x\ +\ \dfrac{24}{x}\ +\ 18\ =\ \dfrac{240}{x}\ +\ x} \\ \\ \sf : \implies {10x²\ +\ 24\ +\ 18x\ =\ 240\ +\ x²} \\ \\ \sf : \implies {9x²\ +\ 18x\ -\ 216\ =\ 0} \\ \\ \sf : \implies {x²\ +\ 2x\ -\ 24\ =\ 0} \\ \\ \sf : \implies {(x\ +\ 6)\ (x\ -\ 4)\ =\ 0} \\ \\ \sf : \implies {\purple{\underline{\boxed{\bf x\ =\ -6\ or\ 4.}}}}\bigstar

● But here x can't be negative, so x = 4.

☯️ So here:-

 \sf : \implies {2\ digits\ number\ =\ \dfrac{10x\ +\ 24}{x}} \\ \\ \sf : \implies {\dfrac{10\ ×\ 4\ +\ 24}{4}} \\ \\ \sf : \implies {40\ +\ 6} \\ \\ \sf : \implies {\purple{\underline{\boxed{\bf 46.}}}}\bigstar

Hence:-

 \sf \therefore {\underline{The\ number\ is\ 46.}}

Similar questions