Math, asked by karanchalwadi, 1 month ago

The product of the zeros of the polynomials 2x^2+3x+1 is​

Answers

Answered by aryankumar20050005
1

2x^2+3x+1

2x^2+2x+x+1

2x(x+1)+1(x+1)

(2x+1)(x+1)

hence (2x+1)(x+1)is the product of 2x^2+3x+1

Answered by ManishShah98
1

\small\red{\underline{Question    } = } \\\small\red{\underline{the \: product \: of \: the \: zeros \: of \: the \: polynomial}}

\small\red{\underline{\underline{Question    } = }} \\\small\red{\underline{the \: product \: of \: the \: zeros \: of \: the \: polynomial}}\\ \small\red{\underline{2 {x}^{2}  + 3x + 1 \:  \: }is.} \\  \\ \small\orange{\underline{\underline{solution}}} \\  \\  \color{blue}  2 {x}^{2}  + 3x + 1 = 0 \\  \\ \color{blue} 2 {x}^{2}  + (2 + 1)x + 1 = 0 \\  \\ \color{blue}2 {x}^{2}  + 2x + x + 1  = 0\\  \\ \color{blue}2x(x + 1) + 1(x + 1) = 0 \\  \\\color{blue} (2 {x} + 1)(x + 1) = 0 \\  \\ \color{blue}2x + 1 = 0 \:  \:  , \:  \: x + 1 = 0\\  \\ \color{blue}2x =  - 1  \:  \: , \:  \: x =  - 1\\  \\ \small\green{\boxed{ \boxed{x =  \frac{ - 1}{2} \:  \: , \:  \: x =  - 1 } \: is \: the \: answer}}\\  \\\small\green{\underline{ zeros \: of \: the \: polynomial \: is \:  \:   \frac{ - 1}{2}  \: and \:  - 1 \:  \: .}} \\  \\ \small\pink{\boxed{hope \: its \: help \: you \: dear}} \\  \\ \small\red{\boxed{\boxed{it's ᭄亗 乄 MꫝղᎥនh 乄 亗✯❤࿐}}}

Similar questions