Math, asked by meenapatel24882, 13 hours ago

the product of the zeros of the quadratic polynomial px²+5x+6 is 3 then the value of p is​

Attachments:

Answers

Answered by paramcomforchowdhury
0

zeroes of a polynomial means f(x)=0

f(x)= px²+5x+6

therefore, px²+5x+6=0

by quadratic formula-

we can show that product of zeroes of quadratic polynomial is c/a

quadratic equation - ax²+bx+c

here c = 6, a= p

c/a = 3

or, 6/p=3

therefore, p=2

To show that product of zeroes of quadratic polynomial is c/a

x =   \frac{ - b  + \sqrt{ {b}^{2} - 4ac } }{2a} or \:   \frac{ - b -  \sqrt{ {b}^{2}  - 4ac} }{2a}  \\  \\ \: product \:  =  \\  (\frac{ - b +  \sqrt{ {b}^{2} - 4ac } }{2a})(\frac{ - b -  \sqrt{ {b}^{2}  - 4ac} }{2a}) \\  \\  =  \frac{ - (- b  + \sqrt{ {b}^{2} - 4ac })(b +  \sqrt{ {b}^{2}  - 4ac} }{4 {a}^{2} }  \\  \\   \star{{a}^{2}  -  {b}^{2}  = (a + b)(a - b)} \\  \\  =  \frac{ - ( \sqrt{ {b}^{2} - 4ac } -  {b})( \sqrt{ {b}^{2} - 4ac } + b)  }{4 {a}^{2} }  \\  \\  =   \frac  { - ( { \sqrt{ {b}^{2}  - 4ac} }^{2}  -  {b}^{2}) }{4 {a}^{2} } \\  \\  =  \frac{ - (  \cancel{{b}^{2}} - 4ac  \cancel{-  {b}^{2}})  }{4 {a}^{2} }  \\  \\  =  \frac{ \cancel4 \cancel{a}c}{ \cancel4  \cancel{{a}^{2}} \: a  }  \\  \\  =  \frac{c}{a}

Similar questions