Math, asked by samihaanwarsuha, 1 month ago

the product of three consecutive integers is 30 times the smallest of the three integers. find the two possible sets of integers that will satisfy this condition.

Answers

Answered by MaheswariS
6

\textbf{Given:}

\textsf{Product of 3 consecutive integers is 30 times smallest}

\textsf{of the three integers}

\textbf{To find:}

\textsf{The three integers}

\textbf{Solution:}

\textsf{Let the three consecutive integers be x, x+1 and x+2}

\mathsf{As\;per\;given\;data,}

\mathsf{x(x+1)(x+2)=30x}

\implies\mathsf{(x+1)(x+2)=30}

\implies\mathsf{x^2+3x+2=30}

\implies\mathsf{x^2+3x-28=0}

\implies\mathsf{(x+7)(x-4)=0}

\implies\mathsf{x=-7,4}

\mathsf{when\,x=4,}

\underline{\mathsf{The\;integers\;are\;4,\;5,\;6}}

\mathsf{when\,x=-7,}

\underline{\mathsf{The\;integers\;are\;-7,\;-6,\;-5}}

\textbf{Find more:}

Product of any four consecutive positive integers is divisible by 24

https://brainly.in/question/5223212

Similar questions