Math, asked by yepicol339, 7 months ago

The product of three consecutive positive integers is divisible by (a) 4 (b) 6 (c) no common factor (d) only 1

Answers

Answered by MaheswariS
1

\underline{\textbf{Given:}}

\textsf{Three consecutive positive integers}

\underline{\textbf{To find:}}

\textsf{The product of three consecutive positive integers is divisible by}

\mathsf{(a)4\;(b)6\;(c)\,no\;common\,factor\;(d)\,only\;1}

\underline{\textbf{Solution:}}

\textsf{We apply Combination formula to solve the problem}

\textsf{We know that,}

\boxed{\mathsf{n_{C_r}=\dfrac{n!}{r!\;(n-r)!}}}

\textsf{Let the three consecutive positive integers be r+1, r+2 and r+3}

\mathsf{Consider,}

\mathsf{\dfrac{(r+1)\times(r+2)\times(r+3)}{6}}

\textsf{This can be written as,}

\mathsf{=\dfrac{1\times\,2\times\,3\times\,4\times\,\;.\;.\;.\;.\;.\times\,r\times\,(r+1)\times(r+2)\times(r+3)}{(1\times\,2\times\,3\times\,4\times\,\;.\;.\;.\;.\;.\times\,r)(1\times\,2\times\,3)}}

\mathsf{=\dfrac{(r+3)!}{r!\,3!}}

\mathsf{=^(r+3)_{C_3}\;it\;is\;an\;integer}

\implies\mathsf{\dfrac{(r+1)\times(r+2)\times(r+3)}{6}\;is\;an\;integer}

\therefore\mathsf{(r+1)\times(r+2)\times(r+3)\;is\;divisible\;by\;6}

\underline{\textbf{Answer:}}

\mathsf{Option\;(b)\;is\;correct}

\underline{\textbf{Find more:}}

10C2,11C3,12C4,13C5 find the values​

https://brainly.in/question/38394541

Find r,if 11c4+11c5+12c6+13c7=14cr

https://brainly.in/question/14451378

#SPJ3

Answered by RiazUllah
0

Answer:

The product of three

consecutive positive integers is

divisible by

(a) 4

(b) 6

(c) no common factor

(c) only 1

Similar questions