The product of three consecutive positive integers is divisible by 6'. Is this statement true or false ? Justify your answer.
Answers
Let's check it.
take three consecutive integers as, x-1 , x and x + 1
so, product is
(x-1)(x)(x+1)
= (x^2-1)x
= x^3 - x
Now. Put some values
put, x = 1 1
1^3 - 1 = 0 div. by 6
2^2 - 2 = 6 div. by 6
3^3 - 3 = 6 div by 6
Hence, It is true
Answer:
Step-by-step explanation:
Let three consecutive positive integers be, n, n + 1 and n + 2.
When a number is divided by 3, the remainder obtained is either 0 or 1 or 2.
∴ n = 3p or 3p + 1 or 3p + 2, where p is some integer.
If n = 3p, then n is divisible by 3.
If n = 3p + 1, ⇒ n + 2 = 3p + 1 + 2 = 3p + 3 = 3(p + 1) is divisible by 3.
If n = 3p + 2, ⇒ n + 1 = 3p + 2 + 1 = 3p + 3 = 3(p + 1) is divisible by 3.
So, we can say that one of the numbers among n, n + 1 and n + 2 is always divisible by 3.
⇒ n (n + 1) (n + 2) is divisible by 3.
Similarly, when a number is divided 2, the remainder obtained is 0 or 1.
∴ n = 2q or 2q + 1, where q is some integer.
If n = 2q ⇒ n and n + 2 = 2q + 2 = 2(q + 1) are divisible by 2.
If n = 2q + 1 ⇒ n + 1 = 2q + 1 + 1 = 2q + 2 = 2 (q + 1) is divisible by 2.
So, we can say that one of the numbers among n, n + 1 and n + 2 is always divisible by 2.
⇒ n (n + 1) (n + 2) is divisible by 2.
Hence n (n + 1) (n + 2) is divisible by 2 and 3.
∴ n (n + 1) (n + 2) is divisible by 6.