Math, asked by sasidharanu44, 1 year ago

the product of three consecutive product product the product of three consecutive positive integers is divisible by 6 is this statement true or false justify your answer​

Answers

Answered by nandanv99
9

Answer:

Step-by-step explanation:

Let three consecutive positive integers be, n, n + 1 and n + 2.  

When a number is divided by 3, the remainder obtained is either 0 or 1 or 2.  

∴ n = 3p or 3p + 1 or 3p + 2, where p is some integer.

If n = 3p, then n is divisible by 3.  

If n = 3p + 1, ⇒ n + 2 = 3p + 1 + 2 = 3p + 3 = 3(p + 1) is divisible by 3.  

If n = 3p + 2, ⇒ n + 1 = 3p + 2 + 1 = 3p + 3 = 3(p + 1) is divisible by 3.  

 

So, we can say that one of the numbers among n, n + 1 and n + 2 is always divisible by 3.  

⇒ n (n + 1) (n + 2) is divisible by 3.  

 

Similarly, when a number is divided 2, the remainder obtained is 0 or 1.  

∴ n = 2q or 2q + 1, where q is some integer.  

If n = 2q ⇒ n and n + 2 = 2q + 2 = 2(q + 1) are divisible by 2.  

If n = 2q + 1 ⇒ n + 1 = 2q + 1 + 1 = 2q + 2 = 2 (q + 1) is divisible by 2.  

 

So, we can say that one of the numbers among n, n + 1 and n + 2 is always divisible by 2.  

⇒ n (n + 1) (n + 2) is divisible by 2.  

 

Hence n (n + 1) (n + 2) is divisible by 2 and 3.

∴ n (n + 1) (n + 2) is divisible by 6.


nandanv99: mark as brainliest if the answere is correct
Answered by amreshjohn
0

Sol; Let us three consecutive integers be, n, n + 1 and n + 2. Whenever a number is divided by 3 the remainder obtained is either 0 or 1 or 2. let n = 3p or 3p + 1 or 3p + 2, where p is some integer. If n = 3p, then n is divisible by 3. If n = 3p + 1, then n + 2 = 3p + 1 + 2 = 3p + 3 = 3(p + 1) is divisible by 3. If n = 3p + 2, then n + 1 = 3p + 2 + 1 = 3p + 3 = 3(p + 1) is divisible by 3. So that n, n + 1 and n + 2 is always divisible by 3. ⇒ n (n + 1) (n + 2) is divisible by 3. Similarly, whenever a number is divided 2 we will get the remainder is 0 or 1. ∴ n = 2q or 2q + 1, where q is some integer. If n = 2q, then n and n + 2 = 2q + 2 = 2(q + 1) are divisible by 2. If n = 2q + 1, then n + 1 = 2q + 1 + 1 = 2q + 2 = 2 (q + 1) is divisible by 2. So that n, n + 1 and n + 2 is always divisible by 2. ⇒ n (n + 1) (n + 2) is divisible by 2. But n (n + 1) (n + 2) is divisible by 2 and 3. ∴ n (n + 1) (n + 2) is divisible by 6.

Similar questions