Math, asked by sarvdeepKaur, 4 months ago

the product of tow successive multiples of 10 is 1200 . then find these multiples

(a) 20,30
(b) 48,25
(c) 60,20
(d) 30,40​

Answers

Answered by Razafaizi
8

Answer:

d) 30, 40

Step-by-step explanation:

30×40= 1200

30 and 40 are successive multiple of 10

Answered by RISH4BH
81

\underline{\textsf{\textbf{\purple{$\mapsto$Given:}}}}

  • The product of two succesive multiples of 10 is 1200.

\underline{\textsf{\textbf{\purple{$\mapsto$To\:Find:}}}}

  • The two numbers.

\underline{\textsf{\textbf{\purple{$\mapsto$Concept\:Used:}}}}

The number is a multiple of 10 , so it will be divisible by 10 . So it will be in the form of 10k , where k is any integer . So if the first number will be 10k , then the second number will be 10k + 10 since they are succesive numbers.

\underline{\textsf{\textbf{\purple{$\mapsto$Answer:}}}}

\sf Let \:us\:take:-

  • \sf \red{Firsrt\: number\:be\:10x.}
  • \sf \red{Second\: number\:be\:10x+10.}

\underline{\underline{\pink{\longmapsto \sf So,\: \mathscr{A}ccording \:to\: the\; \mathscr{Q}uestion ,}}}

\tt:\implies 10x(10x+10)=1200

\tt:\implies 100x^2+100x=1200

\tt:\implies 100x^2+100x-1200=0

\tt:\implies 100(x^2+x-12)=0

\tt:\implies x^2+x-12=\dfrac{0}{100}

\tt:\implies x^2+x-12=0

\tt:\implies x^2+4x-3x-12=0

\tt:\implies x(x+4)-3(x+4)=0

\tt:\implies(x+4)(x-3)=0

\underline{\underline{\boxed{\red{\tt\longmapsto x=(-4),3}}}}

\bf Hence\: values\:of\:x\:is\:(-4)\:\&\:3

\rule{200}3

\underline{\green{\orange{\mapsto}\tt\:When\:x\:is\:(-4).}}

  • \sf First\: Number\:=\:10x\:=\pink{(-40)}
  • \sf Second\: Number\:=\:10x+10\:=\pink{(-30)}

\rule{200}3

\underline{\green{\orange{\mapsto}\tt\:When\:x\:is\:(3).}}

  • \sf First\: Number\:=\:10x\:=\pink{(30)}
  • \sf Second\: Number\:=\:10x+10\:=\pink{(40)}
Similar questions