The product of two consecutive numbers is 12768 find the greater no
Answers
Answer:
hope it helps you mate ☺️
Step-by-step explanation:
An even number has the form [math]2k[/math] the even number before has the form [math]2k-2[/math] for some integer [math]k[/math].
[math](2k-2)×(2k)=12,768[/math]
[math]4k^2-4k=12,768 \mid ÷4[/math]
[math]k^2-k=3,192 \mid (a \pm b)^2=a \pm 2ab+b^2[/math]
[math]\left (k-\frac12 \right )^2-\frac14=3,192 \mid +\frac14[/math]
[math]\left (k-\frac12 \right )^2=\frac{12,769}{4} \mid \sqrt{}[/math]
[math]k-\frac12=\pm \frac{113}{2} \mid +\frac12[/math]
[math]k=-56 \lor 57[/math]
So the greater number is either [math]-112[/math] or [math]114[/math]. And you will see [math]-114×-112=112×114=12,768[/math].
Answer:
1st number = x
2nd number = (x + 1)
x + (x + 1) = 12768
x + x + 1 = 12768
2x + 1 = 12768
2x = 12768 - 1
2x = 12767
x = 12767 ÷ 2
x = 6383.5
Hence 1st number = 6383.5
2nd number = 6383.5 + 1
= 6384.5
ANS = The greater number is 6384.5
Hope it helps