Math, asked by gayau45, 11 months ago

the product of two consecutive positive integer is divided by 2​

Answers

Answered by rehan027
1

Answer:

3

Step-by-step explanation:

two consecutive integer=2,3

product=2x3=6

division=6÷2=3

Answered by Anonymous
30

{\mathfrak{\pink{\underline{\underline{Solution:-}}}}}

\sf{Let\;n\;and\;n-1\;be\;the\;two\;positive\;integers.}

\sf{Product = n(n-1)=n^{2}-n}

\bf{CASE-1\;(when\;n\;is\;even)}

\sf{Let\;n=2q}

\sf{n^{2}-n=(2q)^{2}-2q}

\sf{=4q^{2}-2q}

\sf{=2q(2q-1)}

\sf{Hence\;the\;product\;n^{2}-n\;is\;divisible\;by\;2}

\bf{CASE-2\;(when\;n\;is\;odd)}

\sf{Let\;n\;be\;2q+1}

\sf{n^{2}-n=(2q+1)^{2}-(2q+1)}

\sf{=4q^{2}+4q+1-2q-1}

\sf{=4q^{2}+2q}

\sf{=2q(2q+1)}

\sf{Hence\;the\;product\;n^{2}-n\;is\;divisible\;by\;2}

Hence, we can conclude that the product of two consecutive positive integers is always divisible by 2.

Similar questions