Math, asked by Mister360, 3 months ago

The product of two consecutive positive integers is 342. We need to find the integers.

Answers

Answered by SyedNomanShah
8

Refer to the attachment....

Attachments:
Answered by ItzBrainlyBeast
43

\large\textsf{                                                               }

\LARGE\mathfrak{\underline\textcolor{aqua}{✯\; Solution :-}}

\large\textsf{                                                               }

  • Let the first positive integer be ' x '
  • Let the second positive integer be ' x + 1 '

\large\textsf{                                                               }

As per the given conditions :-

\large\textsf{                                                               }

\qquad\tt{:}\longrightarrow\large\textsf{x ( x + 1 ) = 342}\\\\\\\qquad\tt{:}\longrightarrow\large\textsf{x² + x = 342}\\\\\\\qquad\tt{:}\longrightarrow\large\textsf{x² + x - 342 = 0}\\\\\\\qquad\tt{:}\longrightarrow\large\textsf{x² + 19x - 18x - 342 = 0}\\\\\\\qquad\tt{:}\longrightarrow\large\textsf{x ( x + 19 ) - 18 ( x + 19 ) = 0}\\\\\\\qquad\tt{:}\longrightarrow\large\textsf{( x - 18 ) ( x + 19 ) = 0}\\\\\\\qquad\tt{:}\longrightarrow\large\textsf{x - 18 = 0 \; \; or \; \; x + 19 = 0}\\\\\\\qquad\tt{:}\longrightarrow\boxed{\large\textsf\textcolor{red}{x = 18 \; \; or \; \; x = - 19}}

\large\textsf{                                                               }

↭ As the positive integer can't be negative :-

∴ The value of ' x ' will be = 18

\large\textsf{                                                               }

\boxed{\large\textsf\textcolor{orange}{∴ The first positive integer = 18}}

\boxed{\large\textsf\textcolor{orange}{∴ The second positive integer = 19}}

\large\textsf{                                                               }

\LARGE\mathfrak{\underline\textcolor{aqua}{✯\; Algebraic \; \; Formulas :-}}

\large\textsf{                                                               }

\qquad\tt{:}\longrightarrow\large\textsf{( a + b )² = a² + b² + 2ab}

\qquad\tt{:}\longrightarrow\large\textsf{( a - b )² = a² + b² - 2ab}

\qquad\tt{:}\longrightarrow\large\textsf{a² - b² = ( a + b ) ( a - b )}

\qquad\tt{:}\longrightarrow\large\textsf{a² + b² = ( a + b )² - 2ab}

\qquad\tt{:}\longrightarrow\large\textsf{a³ + b³ = ( a + b ) ( a² - 2ab + b² )}

\qquad\tt{:}\longrightarrow\large\textsf{a³ - b³ = ( a - b ) ( a² + ab + b² )}

\qquad\tt{:}\longrightarrow\large\textsf{( a + b + c )² = a² + b² + c² + 2ab + 2bc + 2ac }

\large\textsf{                                                               }

\large\textsf\textcolor{purple}{     \; \; \; \;   \; \; \; \; \; \; \; \;                ◈ ━━━━━━━ ✪ ━━━━━━━ ◈}

Similar questions