Math, asked by Anonymous, 24 days ago

The product of two numbers is 250 .The numbers are in the ratio 5:10 .Find the numbers.​

Answers

Answered by bobitaramili
6

Answer:

Let the number be 5x and 10x

A/Q —

5x × 10x = 250

15x = 250

x = 50/3

x = 16 2/3

Step-by-step explanation:

Mark me as Brainliest

Answered by YxMissAnglexY
97

✠ \: {\underline{\underline\mathfrak\red{Question:-}}}

The product of two numbers is 250 .The numbers are in the ratio 5:10 .Find the numbers.

⠀⠀⠀⠀

⠀⠀⠀⠀

✠ \: {\underline{\underline\mathfrak\red{Answer:-}}}

Let Required numbers are x & y

x × y = 250 ------------------(1)

⠀⠀⠀⠀⠀⠀⠀⠀:↦ \:  \: \bf{ \frac{x}{y}  =  \frac{5}{10} }

⠀⠀⠀⠀⠀⠀⠀⠀:↦ \:  \: \bf{ \frac{x}{y} =  \frac{1}{2}  }

⠀⠀⠀⠀⠀⠀⠀⠀:↦ 2x = y

⠀⠀⠀⠀⠀⠀⠀⠀⠀y = 2x--------(2)

Put in Equation (1)

⠀⠀⠀⠀⠀⠀⠀⠀⇒x × y = 250

⠀⠀⠀⠀⠀⠀⠀⠀⇒x × 2x = 250

⠀⠀⠀⠀⠀⠀⠀⠀⇒\bf{ {2x}^{2}  = 250}

⠀⠀⠀⠀⠀⠀⠀⠀⇒\bf{  {x}^{2}  =  \frac{250}{2} }

⠀⠀⠀⠀⠀⠀⠀⠀⇒\bf{ {x}^{2}  = 125}

⠀⠀⠀⠀⠀⠀⠀⠀⇒\bf{ x  = \sqrt{125} }

⠀⠀⠀⠀⠀⠀⠀⠀⇒\bf{ x  = {25 \times 5} }

⠀⠀⠀⠀⠀⠀⠀⠀⇒\:{\underline{\boxed{\mathfrak\purple{\bf{ x  =  + - 5  \times  \sqrt{5} }}}}}

From equation (2)

⠀⠀⠀⠀⠀⠀⠀⠀⇒ y = 2x

⠀⠀⠀⠀⠀⠀⠀⠀⇒\bf{ y  = \: 2 \times (  + - 5  \times  \sqrt{5} )}

⠀⠀⠀⠀⠀⠀⠀⠀⇒ \:{\underline{\boxed{\mathfrak\purple{\bf{ y  =  +  - \: 10   \sqrt{5} }}}}}

⠀⠀

⠀⠀⠀⠀⠀⠀⠀⠀{\boxed{\bf\pink{x = 5 \sqrt{5}   \: \: ,  \: \: y = 10  \sqrt{5}  }}}

{\boxed{\bf\pink{x =  - 5 \sqrt{5}   \: \: ,  \: \: y =  - 10  \sqrt{5}  }}}

▅▅▅▅▅▅▅▅▅▅▅▅▅▅▅▅▅▅▅▅▅▅▅▅▅▅▅▅▅▅▅▅

Similar questions