Math, asked by prabhaj008, 7 months ago

the product of two numbers is 2880 one of the numbers is 30 find the other

Answers

Answered by Anonymous
147

Step-by-step explanation:

Given :-

  • the product of two numbers is 2880

  • one of the numbers is 30

To Find :-

  • find the other product.

Solution :-

HCF× LCM = Product of 2 numbers

30 × LCM = 2880

LCM = 2880/30

LCM = 96

Hence the other product is 96

More information :-

  • hcf means higest prime factor.

  • lcm means lowest prime factor.
Answered by ƦαíηвσωStαƦ
13

\huge{\underline{\overline{\mid{\mathfrak{\purple{\:\: SOLUTION\:\:} \mid}}}}}

\underline{ \mathfrak{ \: AnswEr:- \: }} \\ \\

\text{\blue{The other required number = 96}}\\\\

\underline{ \mathfrak{ \: Given:- \: }} \\ \\

\text{ \orange{Product of two numbers = 2880}} \\ \text{ \orange{One of the number = 30}} \\ \\

\underline{ \mathfrak{ \: Need \:\: to \:\: find:-\: }} \\ \\

\text{\red{The other required number = ?}}\\\\

\underline{ \mathfrak{ \: \:Formula \: \: used \: \: here:- \: \: }} \\

\: \: \: \: \: \: \: \: \: \: \: \sf{HCF \times LCM = Product \:of \:two \:numbers} \\ \\

\underline{ \mathfrak{ \: Putting\:\:the\:\:values:- \: }} \\

\sf{ \longrightarrow \: 30 \times LCM = 2880} \\ \\

\sf{ \longrightarrow \: LCM = \dfrac{2880}{30}} \\ \\

\sf{ \longrightarrow \: LCM = \cancel\dfrac{288}{3}} \\ \\

\sf{ \longrightarrow \: LCM = 96}\\ \\

\underline{ \mathfrak{ \: \: Therefore:- \: \: }}

 \sf{\green{The \: \: other\: \:  required\: \: number = \underline{ \: 96\: }}}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Similar questions