Math, asked by mrsuhaib34, 9 days ago

the product of two rational number is 28/27,If one of the rational number is -7/3,find the other​

Answers

Answered by Jiya0071
4

Answer:

let the number be x

product totwo rational number is 8/9

If one of the number be 8/9x

we equate both the number equal

28/27=x*8/9

x=28/27*9/8

similarly this 21/18 (it also divisible)

hence your answer is 7/6

Answered by StarFighter
4

Answer:

Given :-

  • The product of two rational number is 28/27.
  • One of the rational number is - 7/3.

To Find :-

  • What is the other rational number.

Solution :-

Let,

\dashrightarrow \sf\bold{\blue{Other\: rational\: number =\: x}}\\

Given :

\mapsto \bf Product\: of\: rational\: number =\: \dfrac{28}{27}\\

\mapsto \bf One\: of\: rational\: number =\: \dfrac{- 7}{3}\\

According to the question :

\implies \sf \dfrac{- 7}{3} \times x =\: \dfrac{28}{27}

\implies \sf x =\: \dfrac{28}{27} \div \dfrac{- 7}{3}

\implies \sf x =\: \dfrac{\dfrac{28}{27}}{\dfrac{- 7}{3}}\\

\implies \sf x =\: \dfrac{28}{27} \times \dfrac{- 3}{7}\\

\implies \sf\bold{\red{x =\: \dfrac{- 4}{9}}}

\sf\boxed{\bold{\therefore\: The\: other\: rational\: number\: is\: \dfrac{- 4}{9}\: .}}

▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃

VERIFICATION :-

\leadsto \bf \dfrac{- 7}{3} \times x =\: \dfrac{28}{27}

By putting x = - 4/9 we get,

\leadsto \sf \dfrac{- 7}{3} \times \dfrac{- 4}{9} =\: \dfrac{28}{27}

\leadsto \sf \dfrac{(- 7) \times (- 4)}{3 \times 9} =\: \dfrac{28}{27}

\leadsto \sf\bold{\pink{\dfrac{28}{27} =\: \dfrac{28}{27}}}\\

\leadsto \sf\bold{\orange{L.H.S =\: R.H.S}}\\

Hence, Verified !

Similar questions