Math, asked by jasonjoshi7022, 9 months ago

The product of two rational numbers is 28/81. if one of them is 14/9, then find the other

Answers

Answered by BloomingBud
17

Given:

The product of two rational numbers is \tt \frac{28}{81}.

One of them is \tt \frac{14}{9}

To be found:

The other number.

So,

Let the other rational number be 'a'

According to the question:

\bf \implies a\ \times \dfrac{14}{9} = \dfrac{28}{81}\\ \\ \\ \implies \bf a = \dfrac{28}{81} \div \dfrac{14}{9} \\\\ \\ \implies \bf a=\dfrac{28}{_9\cancel{81}} \times \dfrac{\not{9}^1}{14}\ \ \ \ \ \ \ \ \bigg[ \therefore (81 \div 9) = 9 \bigg] \\ \\ \\ \implies \bf a = \dfrac{^2\cancel{28}}{9} \times \dfrac{1}{_1 \cancel{14}} \ \ \ \ \ \ \ \ \bigg[ \therefore (28 \div 14) = 2 \bigg] \\ \\ \\ \implies \bf a=\dfrac{2}{9}

Hence,

The other number is \red{\boxed{\tt \dfrac{2}{9}}}.

\rule{200}2

Verification:

Product of \red{\boxed{\tt \dfrac{2}{9}}} and \tt \frac{14}{9}

= \tt \dfrac{2}{9}\ \times \dfrac{14}{9} \\ \\ \\ = \tt \dfrac{2 \times 14}{9 \times 9} = \dfrac{28}{81}

Hence, Verified

Answered by MaIeficent
22

Step-by-step explanation:

{\red{\underline{\underline{\bold{Given:-}}}}}

  • The product of two rational numbers = \frac{28}{81}

  • One of the number = \frac{14}{9}

{\blue{\underline{\underline{\bold{To\:Find:-}}}}}

  • The other number

{\green{\underline{\underline{\bold{Solution:-}}}}}

Let the number be ' x '

According to the given question:-

 \frac{14}{9}  \times x =  \frac{28}{81}  \\  \\  \implies x =  \frac{28}{81}  \times  \frac{9}{14}  \\  \\  \implies x =  \frac{2}{9}

Verification:-

 \frac{14}{9}  \times x =  \frac{28}{81}  \\  \\  \implies \frac{14}{9} \times  \frac{2}{9}  =  \frac{28}{81}  \\  \\  \implies  \frac{28}{81}  =  \frac{28}{81}

L.H.S = R.H.S

Hence, verified

Therefore:-

\boxed{The \:other\:number \:is \:\frac{2}{9}}

Similar questions