Math, asked by moneshchandra07, 9 months ago

the product of two rationalnumber is 15/56 if one of the number is _5/48 find the other

Answers

Answered by Vamprixussa
6

Given

\bold{Product \ of \ two \ rational \ numbers} = \dfrac{15}{56}

\bold{One \ of \ the \ rational \ number} = \dfrac{5}{48}

Let the other number be x.

\implies \dfrac{5}{48} x = \dfrac{15}{56}

\implies  x = \dfrac{15}{56} \times \dfrac{48}{5}

\implies x = \dfrac{3}{56} \times 48

\implies x = \dfrac{3}{14} \times 12

\implies x = \dfrac{3}{7} \times 6

\implies x  = \dfrac{18}{7}

\boxed{\boxed{\bold{Therefore, \ the \ other \ number \ is \ \frac{18}{7}}}}}}}

                                                               

Answered by amitkumar44481
26

AnsWer :

18 / 7.

To FinD :

Th value of Other number.

SolutioN :

Let,

  • The other number be x.

# Condition :

  • The product of two rational number is 15/56.
  • One of them is 5 / 18.

 \tt \dagger \:  \:  \:  \:  \:  \dfrac{5}{48}  \times x =  \dfrac{15}{56}

Let find the value of x.

 \tt  : \implies  \dfrac{5}{48}  \times x =  \dfrac{15}{56}

 \tt \longmapsto   x =  \dfrac{15}{56}  \times  \dfrac{48}{5}

 \tt \longmapsto   x =  \dfrac{ \cancel{15}}{56}  \times  \dfrac{48}{ \cancel5}

 \tt \longmapsto   x =  \dfrac{3}{ \cancel{56}}  \times  \dfrac{ \cancel{48}}{1}

 \tt \longmapsto   x =  \dfrac{3}{28}  \times  \dfrac{24}{1}

 \tt \longmapsto   x =  \dfrac{3}{14}  \times  \dfrac{12}{1}

 \tt \longmapsto   x =  \dfrac{\cancel{36}}{\cancel{14}}

 \tt \longmapsto   x =  \dfrac{18}{7}

Therefore, the value of Other number is 18 / 7.

\rule{200}3

VerificatioN :

→ 5 / 48 * 18 / 7 = 15 / 56.

→ 90 / 336 = 15 / 56.

→ 30 / 112 = 15 / 56.

→ 15 / 56 = 15 / 56.

Hence Verify.

Similar questions