Math, asked by noornopekhan44, 6 months ago

the product of two successive multiples of 10 is200 then find these multiples option (1)20,30(2)48,25(3)60,20(4)30,40​

Answers

Answered by parthivbghodadra
0

Answer:

(4)

Step-by-step explanation:

no explanation needed

Answered by PD626471
10

\underline{\textsf{\textbf{\pink{$\mapsto$Given:}}}}

  • The product of two succesive multiples of 10 is 1200.

\underline{\textsf{\textbf{\purple{$\mapsto$To\:Find:}}}}

  • The two numbers.

\underline{\textsf{\textbf{\pink{$\mapsto$Concept\:Used:}}}}

  • The number is a multiple of 10 , so it will be divisible by 10 . So it will be in the form of 10k , where k is any integer . So if the first number will be 10k , then the second number will be 10k + 10 since they are succesive numbers.

\underline{\textsf{\textbf{\purple{$\mapsto$Answer:}}}}

\sf Let \:us\:take:-

\sf \green{Firsrt\: number\:be\:10x.}

\sf \red{Second\: number\:be\:10x+10.}

\underline{\underline{\purple{\longmapsto \sf So,\: \mathscr{A}ccording \:to\: the\; \mathscr{Q}uestion ,}}}

\large\bf{\pink{\tt:\implies 10x(10x+10)=1200} }

\large\bf{\purple{\tt:\implies 100x^2+100x=1200} }

\large\bf{\pink{\tt:\implies 100x^2+100x-1200=0} }

\large\bf{\purple{\tt:\implies 100(x^2+x-12)=0} }

\large\bf{\pink{\tt:\implies x^2+x-12=\dfrac{0}{100}} }

\large\bf{\red{\tt:\implies x^2+x-12=0} }

\large\bf{\green{\tt:\implies x^2+4x-3x-12=0} }

\large\bf{\red{\tt:\implies x(x+4)-3(x+4)=0} }

\large\bf{\green{\tt:\implies(x+4)(x-3)=0} }

\underline{\underline{\boxed{\pink{\tt\longmapsto x=(-4),3}}}}

\bf Hence\: values\:of\:x\:is\:(-4)\:\&\:3

\underline{\pink{\purple{\mapsto}\tt\:When\:x\:is\:(-4).}}

\sf First\: Number\:=\:10x\:=\orange{(-40)}

\sf Second\: Number\:=\:10x+10\:=\orange{(-30)}

\underline{\pink{\purple{\mapsto}\tt\:When\:x\:is\:(3).}}

\sf First\: Number\:=\:10x\:=\orange{(30)}

\sf Second\: Number\:=\:10x+10\:=\orange{(40)}

Similar questions