Math, asked by SANAALI2052, 1 year ago

The production of electric bulbs in different factories is shown in the following table. Find the median of the productions.
No. of bulbs : No. of factories
produced (Thousands)
30-40 : 12
40-50 : 35
50-60 : 20
60-70 : 15
70-80 : 8
80-90 : 7
90-100 : 8

Answers

Answered by hukam0685
25

Step-by-step explanation:

\begin{tabular}{|c|c|c|}</p><p>\cline{1-3}</p><p>Class interval &amp; Frequency(fi) &amp; \begin{tabular}[c]{@{}c@{}}Cumulative\\ Frequency\end{tabular} \\ \cline{1-3}</p><p>30-40          &amp; 12            &amp; 12                                                             \\ \cline{1-3}</p><p>40-50          &amp; 35            &amp; 47                                                             \\ \cline{1-3}</p><p>50-60          &amp; 20            &amp; 67                                                             \\ \cline{1-3}</p><p>60-70          &amp; 15            &amp; 82                                                             \\ \cline{1-3}</p><p>70-80          &amp; 8             &amp; 90                                                             \\ \cline{1-3}</p><p>80-90          &amp; 7             &amp; 97                                                             \\ \cline{1-3}</p><p>90-100         &amp; 8             &amp; 105                                                            \\ \cline{1-3}</p><p>Total          &amp;               &amp; 105                                                            \\ \cline{1-3}</p><p>\end{tabular}

Median of grouped data:

Median\:of\:grouped\:data=l +  \bigg(\frac{ \frac{n}{2} - cf }{f} \bigg) \times h \\  \\

Here n= 105

 \frac{n}{2}  =  \frac{105}{2}  = 52.5 \\  \\

Median class:50-60

l= 50

h=10

f=20

cf=47

50 +  \bigg(\frac{ 52.5 - 47 }{20} \bigg) \times 10 \\  \\  \\  =  &gt; 50 +  \frac{5.5}{20}  \times 10 \\  \\  =  &gt; 50 +  \frac{5.5}{2}  \\  \\  =  &gt; 50 + 2.75 \\  \\  = 52.75 \\  \\

Median= 52.75 bulbs

≈ 53 bulbs

Hope it helps you

Similar questions