Math, asked by bldgsydinsp1525, 6 days ago

The pth, qth&rth term of an A.P are a,b,c respectively prove that a(q-r)+b(r-p)+c(p-q)=0

Answers

Answered by mathdude500
26

\large\underline{\sf{Solution-}}

Wᴇ ᴋɴᴏᴡ ᴛʜᴀᴛ,

↝ nᵗʰ term of an arithmetic sequence is,

\begin{gathered}\blue\bigstar\:\:{\underline{\orange{\boxed{\bf{\red{a_n\:=\:a\:+\:(n\:-\:1)\:d}}}}}} \\ \end{gathered}

Wʜᴇʀᴇ,

aₙ is the nᵗʰ term.

a is the first term of the sequence.

n is the no. of terms.

d is the common difference.

Let assume that

↝ First term of an AP = A

and

↝ Common difference of an AP = d

According to statement,

 \red{\rm :\longmapsto\:a_p = a}

\bf\implies \:\boxed{ \tt{ \: A + (p - 1)d = a}}

Also,

 \red{\rm :\longmapsto\:a_q = b}

\bf\implies \:\boxed{ \tt{ \: A + (q - 1)d = b}}

and

 \red{\rm :\longmapsto\:a_r = c}

\bf\implies \:\boxed{ \tt{ \: A + (r - 1)d = c}}

Now, Consider

\rm :\longmapsto\:a(q-r)+b(r-p)+c(p-q)

On substituting the values of a, b and c, we get

\rm=[A + (p - 1)d](q - r) + [A + (q - 1)d](r - p) + [A + (r - 1)d](p - q)

\rm \:  =  \:A(q - r) + d(p - 1)(q - r)  + \\  \rm \: A(r - p) + d(r - p)(q - 1) +  \\  \rm \: A(p - q) + d(p - q)(r - 1)

\rm \:  =  \:A(q - r + r - p + p - q) +  \\  \rm \: d[(p - 1)(q - r) + (q - 1)(r - p) + (r - 1)(p - q)]

\rm = 0 + d\bigg[pq - pr - q + r + qr - qp - r + p + rp - rq - p + q]

\rm \:  =  \:0

Hence,

\bf\implies \:\boxed{ \tt{ \: a(q-r)+b(r-p)+c(p-q) = 0}}

Similar questions