Physics, asked by raushan2930p4uw0j, 11 months ago

The PV-graph for a monatomic gas is shown in figure. Find the energy absorbed by the gas
during this process.

Attachments:

Answers

Answered by nirman95
28

Given:

The PV-graph for a monatomic gas is shown in figure.

To find:

Heat absorbed during the process.

Calculation:

Internal Energy Change of the gas

  \sf{\therefore \: \Delta U =  \mu  \times   C_{V}  \times  d \theta}

  \sf{ =  >  \: \Delta U =  \mu  \times  \dfrac{3R}{2}   \times  d \theta}

  \sf{ =  >  \: \Delta U =  \mu  \times  \dfrac{3R}{2}   \times   \bigg \{\dfrac{(3P_{0})(2V_{0})}{ \mu R }  - \dfrac{(2P_{0})(V_{0})}{ \mu R } \bigg \}}

  \sf{ =  >  \: \Delta U =  \mu  \times  \dfrac{3R}{2}   \times   \bigg \{\dfrac{6P_{0}V_{0}}{ \mu R }  - \dfrac{2P_{0}V_{0}}{ \mu R } \bigg \}}

  \sf{ =  >  \: \Delta U =  \mu  \times  \dfrac{3R}{2}   \times   \bigg \{\dfrac{4P_{0}V_{0}}{ \mu R }   \bigg \}}

  \sf{ =  >  \: \Delta U =6P_{0}V_{0}}

Now, work done

 \sf{W =  \dfrac{1}{2} \bigg( 2P_{0} + 3P_{0} \bigg ) \bigg(2V_{0} - V_{0} \bigg)}

 =  >  \sf{W =  \dfrac{1}{2} \bigg( 5P_{0} \bigg ) \bigg(V_{0} \bigg)}

 =  >  \sf{W =  \dfrac{ 5P_{0} V_{0}}{2} }

So, heat change

 \sf{\Delta Q = \Delta U + W}

 =  >  \sf{\Delta Q = 6P_{0}V_{0} +  \dfrac{5P_{0}V_{0}}{2} }

 =  >  \sf{\Delta Q =   \dfrac{17P_{0}V_{0}}{2} }

So, final answer is:

 \boxed{ \red{  \sf{\Delta Q =   \dfrac{17P_{0}V_{0}}{2} }}}

Similar questions