Math, asked by dhaanichahande18, 1 month ago

The quadratic equation 2kx^ 2 +4x+k-1=0, has real and equal roots, find k.​

Answers

Answered by amansharma264
21

EXPLANATION.

Quadratic equation.

⇒ 2kx² + 4x + k - 1 = 0.

Real and equal roots.

As we know that,

D = Discriminant Or b² - 4ac.

For real and equal roots : D = 0.

⇒ (4)² - 4(2k)(k - 1) = 0.

⇒ 16 - 8k(k - 1) = 0.

⇒ 16 - 8k² + 8k = 0.

⇒ - 8k² + 8k + 16 = 0.

⇒ 8k² - 8k - 16 = 0.

⇒ k² - k - 2 = 0.

⇒ k² - 2k + k - 2 = 0.

⇒ k(k - 2) + 1(k - 2) = 0.

⇒ (k + 1)(k - 2) = 0.

⇒ k = - 1   and   k = 2.

                                                                                                                       

MORE INFORMATION.

Conjugate roots.

(1) = If D < 0.

One roots = α + iβ.

Other roots = α - iβ.

(2) = If D > 0.

One roots = α + √β.

Other roots = α - √β.

Answered by TrustedAnswerer19
38

   \pink{ \boxed{\boxed{\begin{array}{cc} \maltese  \bf \:  \: given \\  \bf \: the \: quadratic \: euation \:  :  \: \\  \\  \bf \: 2k {x}^{2}  + 4x  + k- 1  = 0 \\  \\  \blue{\sf  \rightarrow \:we \: have \: to \: find \: the \: value \: of \:  \: k }\\  \\   \bf \: when \: roots \: of \:the\:equation \:  \: are \\  \orange{ \bf \: real \:  \: and \: equal} \end{array}}}} \\  \\  \\    {\pink{ \boxed{\boxed{\begin{array}{cc} \maltese  \bf \: Formula : \\  \\  \bf if \: a {x}^{2}   + bx + c = 0 \:  \: i s\:  a \: qudratic \\  \bf \: equation \: and  \: its \: roots \: are \:  \\  \orange{ \bf \: real \: and \: equal} \\  \bf \: then \\  \\    \blue{\boxed{ \begin{array}{cc}\bf \: discriminant \:  (D )= 0 \\  \\  \sf \: and \\  \\  \bf \: discriminant \: (D) =  {b}^{2}  - 4ac \end{array}}} \end{array}}}}}\\  \\  \\    \blue{ \boxed{\boxed{\begin{array}{cc} \maltese  \sf \:according \: to \: the \: question \\  \\  \bf \: b = 4 \\  \bf \: a = 2k \\  \bf \: c = k - 1 \\  \\  \sf \: for \: real \: and \: equal \: roots \\   \\  \bf   {b}^{2} - 4ac = 0 \\  \\ \bf \implies \:  {(4)}^{2} - 4 \times 2k \times (k - 1) = 0 \\  \\  \bf \implies \: 16 - 8k(k - 1) = 0 \\  \\  \bf \implies \: 16 - 8 {k}^{2}  + 8k = 0 \\  \\ \bf \implies \: 8 {k}^{2} - 8k - 16 = 0 \\  \\  \bf \implies \:  {k}^{2} - k - 2 = 0 \\  \\ \bf \implies \:  {k}^{2}  - 2k + k  - 2 = 0 \\  \\\bf \implies \: k(k - 2) + 1(k - 2) = 0 \\  \\ \bf \implies \:( k - 2)(k + 1) = 0 \\  \\    \pink{ \boxed{\boxed{\begin{array}{c | c}  \bf \: either \:&amp; \bf \: or \:   \\  \bf \: k - 2 = 0&amp; \bf \: k + 1 = 0   \\   \bf \therefore \:k = 2 &amp; \bf  \therefore \: k =  - 1  \:\end{array}}}}  \\  \\   \bf \therefore \:k = 2 \:  \: or \:  \:  - 1\end{array}}}}

Similar questions