Math, asked by divyanka99, 3 days ago

The quadratic equation 3x2 – 4 √3 x + 4 = 0 has​

Answers

Answered by adityakhambete2
2

Answer:

roots real and equal

Step-by-step explanation:

D=b^{2}-4ac

b=4\sqrt{3\\}

a=3

c=4

D=(4\sqrt{3})^{2}-4*3*4

=16*3-48

48-48

0

so roots real and equal

ROOTS- (-b±√D)/2

(-4√3)/2=2√3

Answered by saichavan
38

 \sf \: 3 {x}^{2}  - 4 \sqrt{3} x + 4 = 0

Comparing with ax²+ bx+ c=0 ,

a = 3 , b= -4√3 , c= 4

\sf \:  {b}^{2}  - 4ac =  {( - 4 \sqrt{3}) }^{2}  - 4 \times 3 \times 4

 \begin{aligned} \sf \:  = 16 \times 3 - 4 \times 3 \times 4 \\  \sf \:  = 16 \times 3 - 48  \\  \sf \:  = 48 - 48 \\  \sf \therefore \green{{b}^{2} - 4ac  = 0} \end{aligned}

By quadratic formula,

 \sf \: x =  \dfrac{ - b \pm \:  \sqrt{ {b}^{2}  - 4ac} }{2a}

 \sf \: x =   \dfrac{ - ( - 4) \times  \sqrt{3} \pm \:  \sqrt{0}  }{2 \times 3}

 \sf  \: x = \dfrac{4 \sqrt{3}  \pm \:  \sqrt{0} }{6}

 \sf \: x = \dfrac{4 \sqrt{3} \pm \: 0 }{ 6}

 \sf \: x =  \dfrac{4 \sqrt{3} }{6}

 \sf \: x =  \dfrac{ \cancel4 \sqrt{3} }{ \cancel6}

  \green{ \boxed{\sf \: x =  \dfrac{2 \sqrt{3} }{3}}}

Additional information :

To find equation -

 \sf \:  {x}^{2}  - ( \alpha  +  \beta )x + ( \alpha  \beta ) = 0

 \sf \alpha + \beta  =  -  \dfrac{b}{a}

  \sf \alpha\beta  =  \dfrac{c}{a}

 \sf {x}^{2}  - (sum \: of \: roots)x + (product \: of \: roots)

 \sf \: Quadratic \: formula  - \\  \sf \: x =  \dfrac{ - b \pm \sqrt{ {b}^{2}  - 4ac} }{2a}

Similar questions