Math, asked by harshika79, 11 months ago

the quadratic equation whose one of the root is (3-√5)
a. x*2-6x+4=0
b.3x*2+5x+2=0
c. x*2-2x+7=0
d. 2x*2+3x+5=0​

Answers

Answered by payalchatterje
1

Answer:

(3-√5) is the root of equation  {x}^{2}  - 6x + 4 = 0.So option a is the correct answer.

Step-by-step explanation:

Given root is (3 -  \sqrt{5} )

Now we want find which equation has the given root.

For solving this question,we need to put value (3 -  \sqrt{5} )instead of x.

i.e x=(3 -  \sqrt{5} )

For the first equation  {x}^{2} -6x+4=0....(1)

We are putting x = (3 -  \sqrt{5} )

in the polynomial {x}^{2} -6x+4

We get,

 {(3 -  \sqrt{5}) }^{2}  - 6(3 -  \sqrt{5}) + 4

9 - 6 \sqrt{5}  + 5 - 18 + 6 \sqrt{5}  + 4 = 0

So equation (3 -   \sqrt{5} )is the root of equation (1),

Again for equation

3 {x}^{2} +5x+2=0.....(2)

We are putting x = (3 -  \sqrt{5} )

in the polynomial 3 {x}^{2} +5x+2

3 {(3 -  \sqrt{5}) }^{2}  + 5(3 -   \sqrt{5}) + 2 = 3(27 - 6 \sqrt{5}  + 5)  +  15 - 5 \sqrt{5}  + 2 = 81 - 18 \sqrt{5}  + 15 + 15 - 5 \sqrt{5}  + 2 ≠0

So (3 -  \sqrt{5} )is the root of equation (2).

For equation  {x}^{2} -2x+7 = 0....(3)

We are putting x = 3 -  \sqrt{5}

in the polynomial  {x}^{2} -2x+7

We get, {(3 -  \sqrt{5}) }^{2}  - 2(3 -  \sqrt{5}) + 7 = 9 - 6 \sqrt{5}   + 5 - 6 + 2 \sqrt{5}  + 7≠0

So (3 -  \sqrt{5} )is not root of equation (3)

For equation 2 {x}^{2} +3x+5=0....(4)

We are putting x = 3 -  \sqrt{5}

in the polynomial 2 {x}^{2} +3x+5

We get,2 {(3 -  \sqrt{5} )}^{2}   + 3 \times (3 -  \sqrt{5} ) + 5

2 \times (9 - 6 \sqrt{5}  + 5) + 9 - 3 \sqrt{5}  + 5 = 18 - 12 \sqrt{5}  + 10 + 9 - 3 \sqrt{5}  + 5≠0

So,3 -  \sqrt{5} is not root of equation (4).

Hence (3 -  \sqrt{5} )is the root of equation (1).

Similar questions